Focusing at the Speed of Sound

Varifocal lens harness the power of sound to shape light

An award winning lens uses sound to shape light making it the world’s fastest varifocal device on the market. This novel mechanism of action enables scanning speeds that are more than three orders of magnitudes faster than competing technologies. In one simple turnkey solution, the lens provides a computer-controlled platform that works with existing optical assemblies to add ultra-fast, high-precision focal length selection, while at the same time giving a user the option for continuous high-speed scanning that effectively extends the depth-of-field of any optical system without sacrificing resolution or wavefront quality.
High resolution imaging, high throughput industrial machine vision, and even biomedical optics all share a common problem: current approaches are ill-suited for non-flat surfaces or 3D volumes due to an inherent inability of traditional optical systems to rapidly change the focal position or to control the depth-of-field independently of the magnification. Recent improvements in the quality and speed of x-y translation devices allow for rapid sequential imaging of single focal planes; however, due to the lack of suitable high-speed z-focusing devices, speed benefits are limited to relatively flat samples. The TAG lens solves these problems by providing a plug&play, computer-controlled lens that works with existing optical assemblies to add ultra-high speed z-axis tunability without any moving parts. Adjustable optical elements on the market are constrained by the notion that a physical change in a surface or interface is needed to redirect light in a controllable fashion. In other words, to change the focal length, devices either shift the location of a fixed lens (similar to autofocus in a camera) or attempt to change the curvature of the lens surface (similar to how one’s eye works). Such mechanisms can be slow as they require material to be moved or reshaped, fundamentally limiting the speed at which these systems can operate.

A technology like no other

TAG Optics uses a fundamentally different approach to change focal length. The TAG lens works on the scientific principle that the focal length of a lens can be changed by altering its index of refraction while keeping the surfaces and physical shape unchanged. The company introduces this principle in its technology which uses sound to control the index of refraction in a material. When sound travels through a material, it causes small, coordinated density fluctuations that occur at well-defined locations. Since the index of refraction of a material is related to its density, these small density changes lead to a well-defined index of refraction profile which can be easily controlled by the user to produce the desired optical effect. Moreover, since sound propagates very rapidly, the lens can scan over a complete range of focal lengths in only microseconds, orders of magnitude faster than other variable focal devices on the market. This technology is opening new possibilities and enabling a new wave of innovation in the imaging and processing markets by conferring several advantages. First, there is no mass transport, thus speeds that are three orders of magnitude faster than other variable focus devices can be achieved. Second, the lens is not susceptible to material fatigue, as there are no fundamental limits to how often sound can compress liquids, leading to long lifetimes and low maintenance. Third, the lens exhibits low spherical aberration making it ideal for use in high resolution imaging and processing applications. Finally, all lenses are highly versatile and have the ability to focus, defocus, reshape, or extend the depth-of-field of existing optical assemblies, providing great value to users and industrial adopters. The versatile nature of the lens means that it can be incorporated in anything from conveyor belt systems to security imaging. The integration of this technology can confer speed, increase throughput, reduce down time due to mechanical system failure, and thereby, leverage existing capital equipment while providing true economic value proposition to the end user.

Machine vision and inspection

The new lenses are particularly well-suited for the machine vision industry providing tunable depth-of-field control, with the ability to give more than a 30x increase in the original depth-of-field and a true on/off state without having to physically change optics. When used in applications where speed is critical it can create an instantaneous z-projection by combining information from all foci within the camera such that one exposure is all that is necessary to capture the full multidimensional data. In macro inspection such as the visualization of printed circuit boards, part inspection, or high-throughput defect identification, the optical system must be able to focus on rapidly moving objects where the desired information may be located at different z-positions within the sample. Current state of the art systems are still hindered by their depth-of-field limitations and as such create a speed bottleneck for the entire inspection process. By incorporating the new lens within a conveyor belt system, rotating disk assembly, or other high-speed scanning technology, end-users and system-integrator alike will be able to significantly increase the throughput of the system without sacrificing x-y resolution. Similarly, microscopic inspection presents many of the same demands on the optics assembly with the additional need for high resolution. The unique aspheric lens attribute of the lens means that it can achieve diffraction limited imaging in a microscope assembly allowing for the detailed inspection of such objects as microfabricated semiconductor wafers or small microelectromechanical (MEMS) devices.

Das könnte Sie auch interessieren

42MP-Farb-Autofokuskamera

The Imaging Source veröffentlicht eine neue USB3.0-42MP-CMOS-Kamera mit 7fps bei 42MP bzw. 110fps bei Full HD. Die Kamera bietet ein C/CS-Mount oder eine integrierte Optik (inkl. Autofokus). Neben einer automatischen Farbkorrektur und einem 2/3″ CMOS-Sensor ist im Gesamtpaket auch ein Barcode SDK sowie die Vermessungssoftware IC Measure.

www.theimagingsource.com

Anzeige

Die High-Power-LED-Strahler und mit externem Controller gesteuerte Beleuchtungen der Marke Lumimax sind mit neuen Schalteingängen ausgestattet. Die Verwendung von optoisolierten Schalteingängen vereinfacht das Ansteuern der Beleuchtung über die Programmierung der Kamera. Die Beleuchtung kann dadurch genau zum Zeitpunkt der Bildaufnahme lastfrei (High- oder Low-Side) über ein SPS (24VDC)-oder TTL (5VDC)-Signal geschaltet werden. Ein T-Adapterkabel ist die Verbindung zwischen Kamera und Beleuchtung. Über dieses ist die Beleuchtung direkt an die Kamera angeschlossen und ermöglicht das synchrone Schalten zur Bildaufnahme

www.iimag.de

Anzeige
LED-Ringlicht in Schutzgehäuse

Der eingebaute Mikro-Blitzcontroller der neuen LED-Ringlicht-Serie ermöglicht die Anpassung einer Vielzahl von Parametern, wie Pulslänge, Auslöseverhalten, Stromverstärkung und vieles mehr. Die Programmierung kann über RS232 erfolgen – später auch über Bluetooth und WLAN. Die Verstärkung lässt sich bis zum sechsfachen Nennstrom einstellen, so dass die acht 1W Oslon LEDs eine maximale Leistung von bis zu 46W erzielen. Der Controller überprüft die getroffenen Einstellungen und warnt, wenn der Strom für die Pulslänge / Zykluszeit hoch wird.

www.autovimation.com

Anzeige

Die Runtime 5.4.4 von Silicon Software unterstützt mit der Erweiterung des GenICam Explorers die Konfiguration von Action Commands für GigE Vision-Kameraschnittstellen und -Framegrabber. Der GenICam Explorer erkennt angeschlossene Kameras automatisch und ermöglicht den direkten Zugriff auf die GenICam Schnittstelle der Kamera. Über eine grafische Benutzeroberfläche lassen sich die Kameraverbindung, Link-Topologie sowie die Kamera selbst und die Framegrabber-Firmware konfigurieren und steuern sowie die Einstellungen speichern. Der GenICam Explorer ist neben GigE Vision auch für die Kameraschnittstellen CoaXPress und Camera Link HS erhältlich und für alle gängigen Kameramodelle einsetzbar.

www.silicon-software.de

Hochauflösende CXP- und CL-Highspeed-Kameras

Die Kameramodelle Eosens 25CXP+, 12CXP+ und 25CL+ besitzen einen Onsemi Python CMOS Sensor. Die hohe Lichtempfindlichkeit der Hochgeschwindigkeitskameras von 5,8V/Lux*s@550nm liefert auch bei schlechten Lichtverhältnissen verlässliche Bildinformationen. Die CXP+ Modelle verfügen über eine 4-Kanal CXP-6 CoaXPress V1.1-Schnittstelle. Die 25CXP + liefert 80fps bei einer Auflösung von 5.120×5.120 Pixeln. Die 12CXP+ bietet 165fps bei einer Auflösung von 4.096×3.072 Pixeln. Bei einer Auflösung von 1.024×768 Pixeln erhöht sich die Framerate auf bis zu 765fps.

www.mikrotron.de

Anzeige
Zukünftige Verlagerungen

Im vierten Teil der VDMA IBV Expertenrunde geht es um das Thema Kameras. Der Kameramarkt ist derzeit im Wandel, sei es durch technische Entwicklungen (z.B. Embedded Vision), aber auch durch eine zunehmende Zahl von Akquisitionen. Daher hat sich inVISION mit Dr. Dietmar Ley, CEO der Basler AG, über den Kameramarkt der Zukunft unterhalten.

www.baslerweb.com

Anzeige