Schärfentiefe und Abbildungstiefe

Schärfentiefe (Tiefenschärfe) und Abbildungstiefe sind zusammengehörende Größen der optischen Abbildung: Die Schärfentiefe entsteht auf der Gegenstandsseite, die Abbildungstiefe auf der Bildseite.

Bei der Fotografie wird als Schärfentiefe die Erscheinung bezeichnet, dass sich die schärfe 'nicht merklich ändert'. (Bild: robdomel / Fotolia.com)

Bei der Fotografie wird als Schärfentiefe die Erscheinung bezeichnet, dass sich die schärfe ’nicht merklich ändert‘. (Bild: robdomel / Fotolia.com)

Wird ein Gegenstand vor einem Objektiv entlang der optischen Achse verschoben, ändert sich die Schärfe des entstehenden Bildes. Bei der Fotografie wird als Schärfentiefe dabei die Erscheinung bezeichnet, dass sich die Bildschärfe´nicht merklich ändert. In der Bildverarbeitung wird damit beschrieben, dass die Lage des Hell-Dunkel-Übergangs einer Objektkante auch bei Änderungen der Bildschärfe konstant und zuverlässig erkannt wird. Der Entfernungsbereich vor dem Objektiv, in dem sich der Gegenstand für die ´nicht merklich unscharfe Abbildung/das Bild mit erkannter Objektkante befinden darf, ist der Schärfentiefebereich. Er wird durch die vordere und hintere Schärfentiefengrenze begrenzt. Werden diese Grenzen überschritten, so wird das Bild für die Erkennung zu unscharf. Praktisch bedeutsam ist die Schärfentiefe für die zuverlässige Erkennung von Bildinhalten, auch wenn sich die Gegenstände in unterschiedlicher Entfernung zum Objektiv befinden bzw. unterschiedlich scharf abgebildet werden. Ursache für das Auftreten der Schärfentiefe ist die begrenzte örtliche Auflösung des Bildsensors (Pixelgröße). Wären Pixel unendlich klein, könnte es keine Schärfentiefe geben. Drei Einflussfaktoren beeinflussen die Größe des Schärfentiefebereiches: (a) Die zulässige Unschärfe im Bild, (b) die Größe der Öffnungsblende und (c) der Abbildungsmaßstab. Er vergrößert sich bei größeren Pixeln (verringert geometrische Auflösung), geschlossener Blende (Grenzen der förderlichen Blende beachten) und kleinerem Abbildungsmaßstab. Berechnet wird der Schärfentiefebereich S wie folgt:

  • • Bei entozentrischen Objektiven:

S=u’*2k*(ß’eff.-1)/ß’eff.2 mit ß’eff.=k*(1-ß‘)

  • • Bei telezentrischen Objektiven:

S=u’*(ß‘-1)/(A’*ß’2)

u‘ zulässige Unschärfe im Bild

k Blendenzahl

ß‘ rechnerischer Abbildungsmaßstab (<0)

ß‘ eff. effektiver Abbildungsmaßstab (<0)

A‘ bildseitige numerische Apertur

Die Größenbereiche der Schärfentiefe sind sehr verschieden: Mikroskopische Aufnahmen haben bei großem Abbildungsmaßstab nur wenige µm Schärfentiefebereich. Aufnahmen großer Objekte (kleiner Abbildungsmaßstab) können Schärfentiefebereiche von vielen Metern bis km beinhalten. Bildseitige Begleiterscheinung der Schärfentiefe ist die Abbildungstiefe. Sie kennzeichnet den Bereich, in dem sich der Bildsensor entlang der optischen Achse um die ideal scharfe Abbildungsebene befinden darf, und dennoch ein hinreichend scharfes Bild entsteht. Abbildungstiefe und Schärfentiefe sind über den Abbildungsmaßstab miteinander verknüpft.

Schärfentiefe und Abbildungstiefe
Bild: robdomel / Fotolia.com


Das könnte Sie auch interessieren

Unbekannte Gesichter

Dank Gesichtserkennungstechnologie identifiziert eine Security-Kamera Personen und sendet deren Namen an das Smartphone des Besitzers bzw. informiert den Nutzer über unbekannte Gesichter im Haus.

www.netatmo.com

Anzeige
A $50,000 Camera you Already Own

Conventional cameras capture images using only three frequency bands (red, blue, green), while the full visual spectrum is a much richer representation that facilitates a wide range of additional and important applications. A new technology allows conventional cameras to increase their spectral resolution, capturing information over a wide range of wavelengths without the need for specialized equipment or controlled lighting.

Anzeige
Inspired by the Kinect

Although different 3D cameras and scanners have existed for some time, present solutions have been limited by several unwanted compromises. If you wanted high speed, you would get very low resolution and accuracy (e.g. Time-of-Flight cameras and existing stereo vision cameras, which despite being fast typically have resolution in the millimeter to centimeter range). If you wanted high resolution and accuracy, you would typically get a camera that was slow and expensive (e.g. the high accuracy scanners).

www.zividlabs.com

4. VDI-Fachkonferenz ‚Industrielle Bildverarbeitung‘

Vom 18. bis 19. Oktober veranstaltet der VDI die nunmehr 4. Fachkonferenz zum Thema ‚Industrielle Bildverarbeitung‘ im Kongresshaus Baden-Baden. In 19 Fachvorträgen werden u.a. die Schwerpunktthemen Automation in der Robotik mit 3D-Bildverarbeitung, Oberflächeninspektion und Bildverarbeitung in der Nahrungsmittelindustrie und intelligenten Logistik behandelt.

www.vdi-wissensforum.de

Anzeige
Low Noise SWIR-Camera with 400fps

C-Red 2 is an ultra high speed low noise camera designed for high resolution SWIR-imaging based on the Snake detector from Sofradir. The camera is capable of unprecedented performances up to 400fps with a read out noise below 30 electrons. To achieve these performances, it integrates a 640×512 InGaAs PIN Photodiode detector with 15m pixel pitch for high resolution, which embeds an electronic shutter with integration pulses shorter than 1μs. The camera is capable of windowing and multiple ROI, allowing faster image rate while maintaining a very low noise.

www.first-light.fr

Anzeige
Whitepaper: Sechs Kriterien für den optimalen Bildsensor

Ob Automatisierung, Mensch-Maschine-Kollaboration in der Robotik oder selbstfahrende Autos – die Auswahl des richtigen Sensors hängt stark von der Applikation und dem gewünschten Output ab. Diese 6 Faktoren helfen Ihnen dabei, den passenden Sensor für Ihre Applikation zu finden!

imaging.framos.com