Schärfentiefe und Abbildungstiefe

Schärfentiefe (Tiefenschärfe) und Abbildungstiefe sind zusammengehörende Größen der optischen Abbildung: Die Schärfentiefe entsteht auf der Gegenstandsseite, die Abbildungstiefe auf der Bildseite.

Bei der Fotografie wird als Schärfentiefe die Erscheinung bezeichnet, dass sich die schärfe 'nicht merklich ändert'. (Bild: robdomel / Fotolia.com)

Bei der Fotografie wird als Schärfentiefe die Erscheinung bezeichnet, dass sich die schärfe ’nicht merklich ändert‘. (Bild: robdomel / Fotolia.com)

Wird ein Gegenstand vor einem Objektiv entlang der optischen Achse verschoben, ändert sich die Schärfe des entstehenden Bildes. Bei der Fotografie wird als Schärfentiefe dabei die Erscheinung bezeichnet, dass sich die Bildschärfe´nicht merklich ändert. In der Bildverarbeitung wird damit beschrieben, dass die Lage des Hell-Dunkel-Übergangs einer Objektkante auch bei Änderungen der Bildschärfe konstant und zuverlässig erkannt wird. Der Entfernungsbereich vor dem Objektiv, in dem sich der Gegenstand für die ´nicht merklich unscharfe Abbildung/das Bild mit erkannter Objektkante befinden darf, ist der Schärfentiefebereich. Er wird durch die vordere und hintere Schärfentiefengrenze begrenzt. Werden diese Grenzen überschritten, so wird das Bild für die Erkennung zu unscharf. Praktisch bedeutsam ist die Schärfentiefe für die zuverlässige Erkennung von Bildinhalten, auch wenn sich die Gegenstände in unterschiedlicher Entfernung zum Objektiv befinden bzw. unterschiedlich scharf abgebildet werden. Ursache für das Auftreten der Schärfentiefe ist die begrenzte örtliche Auflösung des Bildsensors (Pixelgröße). Wären Pixel unendlich klein, könnte es keine Schärfentiefe geben. Drei Einflussfaktoren beeinflussen die Größe des Schärfentiefebereiches: (a) Die zulässige Unschärfe im Bild, (b) die Größe der Öffnungsblende und (c) der Abbildungsmaßstab. Er vergrößert sich bei größeren Pixeln (verringert geometrische Auflösung), geschlossener Blende (Grenzen der förderlichen Blende beachten) und kleinerem Abbildungsmaßstab. Berechnet wird der Schärfentiefebereich S wie folgt:

  • • Bei entozentrischen Objektiven:

S=u’*2k*(ß’eff.-1)/ß’eff.2 mit ß’eff.=k*(1-ß‘)

  • • Bei telezentrischen Objektiven:

S=u’*(ß‘-1)/(A’*ß’2)

u‘ zulässige Unschärfe im Bild

k Blendenzahl

ß‘ rechnerischer Abbildungsmaßstab (<0)

ß‘ eff. effektiver Abbildungsmaßstab (<0)

A‘ bildseitige numerische Apertur

Die Größenbereiche der Schärfentiefe sind sehr verschieden: Mikroskopische Aufnahmen haben bei großem Abbildungsmaßstab nur wenige µm Schärfentiefebereich. Aufnahmen großer Objekte (kleiner Abbildungsmaßstab) können Schärfentiefebereiche von vielen Metern bis km beinhalten. Bildseitige Begleiterscheinung der Schärfentiefe ist die Abbildungstiefe. Sie kennzeichnet den Bereich, in dem sich der Bildsensor entlang der optischen Achse um die ideal scharfe Abbildungsebene befinden darf, und dennoch ein hinreichend scharfes Bild entsteht. Abbildungstiefe und Schärfentiefe sind über den Abbildungsmaßstab miteinander verknüpft.

Schärfentiefe und Abbildungstiefe
Bild: robdomel / Fotolia.com


Das könnte Sie auch interessieren

Kamera-Kompositgehäuse für Roboteranwendungen

Der Kamerakopf des Bildverarbeitungssystem Robot Inspector for Integrity Analysis (RIITTA) ist eine kompakte Einheit, die alle Einzelkomponenten wie Kamera, Objektiv, blitzbare LED-Beleuchtung und Ansteuerelektronik in einem Spezialgehäude vereint. Das leichte Kompositgehäuse ist IP65-geschützt und bietet Schutz vor Staub und Spritzwasser. Die Eigenschaften der verwendeten Materialien in Verbindung mit dem Design des Gehäuses vermeiden Trägheitsmomente, die vor allem bei Roboteranwendungen eine entscheidende Rolle spielen.

www.asentics.de

Neuer Geschäftsführer bei Omron Electronics

 

Zuvor war Kluger als Managing Director Europe und Vice President Business Development für Adept Technology, später für Omron Adept Technologies tätig. Außerdem ist er als ehrenamtliches Vorstandsmitglied im Fachverband Robotik des VDMA aktiv.

www.industrial.omron.eu

Jahresabschluss und Verä;nderungen bei Stemmer

Am 30. Juni hat der global tätige Bildverarbeiter Stemmer Imaging sein Geschäftsjahr 2016/2017 mit einem Umsatz von 88,7Mil.€ und einem währungsbereinigten Wachstum von 6% abgeschlossen. Der Abschluss stellt auch das Ende einer Ära dar.

www.stemmer-imaging.de

Zylinderkopf-Volumenprüfung

Der 3D Snapshot Sensor Gocator 3210 mit integrierter Zylinderkopf-Volumenprüfung wurde speziell für die Kammervolumeninspektion von Zylinderköpfen in kleinen bis mittelgroßen Verbrennungsmotoren entwickelt. Die Sensoren produzieren hochauflösende 3D-Scans und Messergebnisse mit einer Genauigkeit von +/-0,04cm3 in weniger als 5Sek., selbst bei Brennkammern und Kolben mit glänzenden Oberflächen. Eine 2MP Stero-Kamera minimiert Abschattungen.

www.lmi

Anzeige
Verbesserte Genauigkeiten für Messmaschinen

Für das hochgenaue Messen wurde die Auswerte-Elektronik Quadra-Chek 3000 entwickelt. Moderne Videowerkzeuge werten das Kamerabild von Mess- und Profilprojektoren, Messmikroskopen oder Videomessmaschinen aus. Die integrierte Fehlerkompensation verbessert die mechanische Genauigkeit der Messmaschine. Filterfunktionen verhindern, dass Verschmutzungen auf dem zu messenden Objekt oder auf der Optik der Messmaschine das Ergebnis verfälschen. Bei der Auswertung des Kamerabildes erkennt die Elektronik Kanten und legt darauf Messpunkte fest.

www.heidenhain.de

Anzeige
Sicherheit ab dem ersten Teil

Die Möglichkeit des korrelationsfreien Messens ermöglicht in der Produktionslinie bereits für das erste Bauteil die notwendige Sicherheit über die Maßhaltigkeit. Damit können Unternehmen darauf verzichten, in regelmäßigen Abständen ihre Karosserieteile auf einem Koordinatenmessgerät (KMG) nachzumessen und die erkannten Abweichungen zwischen Inline und KMG als Korrekturwerte auf die Inline-Messanlagen zu übertragen.

www.zeiss.de

Anzeige