Kommissionieren mit sehenden Regalrobotern

Warenlager 4.0

Egal in welchem Bereich, sei es E-Commerce oder auch die Intralogistik in der Automobilbranche, überall braucht man am Ende ein einzelnes Objekt und keine ganze Palette. Bisher erfolgt der stückgenaue Zugriff auf einzelne Produkte fast immer durch den Menschen. Der Kommissionier-Roboter Toru soll dies ändern: Der mobile, wahrnehmungsgesteuerte Roboter ermöglicht die genaue Vermessung und Erkennung von Objekten mittels 2D-/3D-Kameras sowie den sicheren Griff auf das einzelne Produkt.
Um sich im neuen Lager zurechtzufinden, erkundet Toru zunächst seine Umwelt mit seinen Sicherheitslasern. Dabei erstellt der mobile Roboter eine elektronische Karte zur eigenen Navigation, die er über WLAN den anderen Robotern zur Verfügung stellt. Mit dieser Karte kann er seinen optimalen Pfad planen. Anschließend ist der Roboter einsatzbereit. Der Kommissionier-Roboter erhält seinen Auftrag vom Warenwirtschaftssystem (WWS) per WLAN und fährt selbstständig zum entsprechenden Lagerplatz. Die Navigation funktioniert vollständig autonom auf der Basis von Laserscannern, wobei eine Kombination von Sicherheitslasern und Time-of-Flight (ToF) verwendet wird. Letztere kommen zum Einsatz, wenn der Roboter nah an das Regal heranfährt, um die Abstände genau zu messen. Externe Marker für die Orientierung des Roboters im Raum werden hingegen nicht benötigt.

Ermittlung des Greifpunkts

Dank der drehbaren Hubsäule gelingt es Toru, Objekte in einer Höhe von 10 bis 209cm zu erreichen. Der Roboter kann also sowohl das unterste als auch das oberste Regalfach von gängigen Fachbodenregalen bedienen. Um das Objekt zu identifizieren und den perfekten Greifpunkt zu ermitteln, kommt das neu entwickelte Sheet-of-Light-Verfahren zum Einsatz, das auf Basis eines Kreuzlasers und einer 2D-Kamera funktioniert. Der Kreuzlaser projiziert zwei aufeinander senkrechte Laserlinien auf das zu vermessende Objekt. Die 2D-Kamera nimmt die reflektierten Laserstrahlen auf und vermisst das Objekt anhand der Position der Linien im Kamerabild. Im Vergleich zu 3D-Kamerasystemen werden weniger 3D-Punkte erzeugt und damit eine deutlich geringere Rechenleistung benötigt, was wiederum mit deutlich geringeren Kosten verbunden ist. Das Verfahren ist für quaderförmige Objekte wie Bücher, Schachteln und Schuhkartons geeignet. Im Anschluss erfolgt der stückgenaue Zugriff: Soll z.B. ein Buch aus dem Regal von einem Bücherstapel gegriffen werden, fährt eine Greifschiene über das oberste Buch hinweg, setzt an der Hinterkante des Buches an und zieht es vom Stapel auf die ausgefahrenen Führungsschienen. Der Roboter lagert das Buch in seinem mitfahrenden, herausnehmbaren Kommissionier-Regal mit rutschfesten Regalböden zwischen und kann den Pickvorgang unverzüglich fortsetzen. Auch der beidseitige Pickvorgang in einem Regalgang ist mit der drehbaren Hubsäule möglich. Ist das Regal voll, fährt der Kommissionier-Roboter eigenständig zur Versandstation, um das Regal in einer speziellen Be- und Entladestation abzugeben und sich ein neues Regal aufzuladen.

Einsatz parallel zum Menschen

Grundlage für die Programmierung des Roboters bildet das Software-Framework ROS (Robot Operating System). Im Gegensatz zu klassischen Industrierobotern, die in der Regel einmal programmiert werden und dann in der Lage sind, einen festgelegten Arbeits- bzw. Bewegungsablauf repetitiv durchzuführen, plant der autonome Roboter seine Bewegungen in Echtzeit und kann somit auf eine dynamische Umgebung mit ihren unvorhersehbaren Ereignissen und Fehlern reagieren. Diese Fähigkeit ist vor allem in Hinblick auf die Zusammenarbeit von Roboter und Mensch in einem Warenlager entscheidend. Tritt ein Mensch vor ihn, dann bleibt der Roboter dank seiner Sicherheitslaser automatisch stehen oder weicht ihm aus. Aber auch mit Veränderungen der Lagerstruktur oder des Produktsortiments kann Toru umgehen, indem er neue Produkte erkennt und seine Navigationskarte dem veränderten Lager entsprechend anpasst. Alle Roboter sind zudem mit einem zentralen Rechner verbunden, der wiederum mit dem WWS kommuniziert. Dank Multi-robot control können die Roboter effizient in der Gruppe eingesetzt werden. Kommt es beispielsweise zu einer Fehlfunktion bei einem Roboter, sendet der Roboter per WLAN ein Fehlsignal an den zentralen Rechner und das Kontrollsystem kann die Aufgabe einem anderen Roboter übertragen, der diese autonom übernimmt.

Das könnte Sie auch interessieren

Unbekannte Gesichter

Dank Gesichtserkennungstechnologie identifiziert eine Security-Kamera Personen und sendet deren Namen an das Smartphone des Besitzers bzw. informiert den Nutzer über unbekannte Gesichter im Haus.

www.netatmo.com

Anzeige
A $50,000 Camera you Already Own

Conventional cameras capture images using only three frequency bands (red, blue, green), while the full visual spectrum is a much richer representation that facilitates a wide range of additional and important applications. A new technology allows conventional cameras to increase their spectral resolution, capturing information over a wide range of wavelengths without the need for specialized equipment or controlled lighting.

Anzeige
Inspired by the Kinect

Although different 3D cameras and scanners have existed for some time, present solutions have been limited by several unwanted compromises. If you wanted high speed, you would get very low resolution and accuracy (e.g. Time-of-Flight cameras and existing stereo vision cameras, which despite being fast typically have resolution in the millimeter to centimeter range). If you wanted high resolution and accuracy, you would typically get a camera that was slow and expensive (e.g. the high accuracy scanners).

www.zividlabs.com

4. VDI-Fachkonferenz ‚Industrielle Bildverarbeitung‘

Vom 18. bis 19. Oktober veranstaltet der VDI die nunmehr 4. Fachkonferenz zum Thema ‚Industrielle Bildverarbeitung‘ im Kongresshaus Baden-Baden. In 19 Fachvorträgen werden u.a. die Schwerpunktthemen Automation in der Robotik mit 3D-Bildverarbeitung, Oberflächeninspektion und Bildverarbeitung in der Nahrungsmittelindustrie und intelligenten Logistik behandelt.

www.vdi-wissensforum.de

Anzeige
Low Noise SWIR-Camera with 400fps

C-Red 2 is an ultra high speed low noise camera designed for high resolution SWIR-imaging based on the Snake detector from Sofradir. The camera is capable of unprecedented performances up to 400fps with a read out noise below 30 electrons. To achieve these performances, it integrates a 640×512 InGaAs PIN Photodiode detector with 15m pixel pitch for high resolution, which embeds an electronic shutter with integration pulses shorter than 1μs. The camera is capable of windowing and multiple ROI, allowing faster image rate while maintaining a very low noise.

www.first-light.fr

Anzeige
Whitepaper: Sechs Kriterien für den optimalen Bildsensor

Ob Automatisierung, Mensch-Maschine-Kollaboration in der Robotik oder selbstfahrende Autos – die Auswahl des richtigen Sensors hängt stark von der Applikation und dem gewünschten Output ab. Diese 6 Faktoren helfen Ihnen dabei, den passenden Sensor für Ihre Applikation zu finden!

imaging.framos.com