A Tale of Two Chips

Jeff Bier’s Embedded Vision Column

In 2012, I wrote about how mobile application processors were becoming increasingly popular in embedded systems. Since then, this trend has accelerated, fueled in part by low-cost development boards aimed at enabling embedded system developers to evaluate these chips and quickly create prototype products.
For embedded systems developers, these boards (some developed by chip suppliers and some from their partners) can seem like a dream come true: they’re inexpensive and energy-efficient, and they offer impressive features and performance. But working with these boards often puts me in the mind of Dickens‘ famous passage: „It was the best of times, it was the worst of times.“ On the one hand, these boards are easy to obtain and easy to get started with. (Where ‚getting started‘ is typically defined as compiling some code to run on the CPU.) On the other hand, developers trying to do more-sophisticated work with these boards can easily find themselves stymied. I see this most frequently in two areas: compute acceleration and I/O interfaces. One of the keys to mobile application processors‘ impressive performance/cost ratios and energy efficiency is the extensive use of heterogeneous processing: In addition to a multi-core CPU, mobile application processors include a bevy of more-specialized programmable and fixed-function processing blocks. These include GPUs that can be used as general-purpose parallel processors, video encode/decode engines, DSPs (often used for audio and sensor signal processing), and image signal processors (used to improve images captured by the image sensors). By virtue of their specialization, these co-processors deliver much better cost-performance and energy efficiency than the main CPU for certain sets of tasks. Therefore, utilizing the full capabilities of mobile processor chips (or anything approaching their full capabilities) requires harnessing these special-purpose engines. But doing so typically requires specialized knowledge, development tools and APIs. Unfortunately, mobile application processor suppliers often don’t make the necessary software and documentation generally available. Similar challenges abound when developers utilize sophisticated I/O interfaces and system control capabilities on mobile application processors. For example, in the past few weeks, one BDTI client has struggled with an incompatible USB3 port on one mobile SoC development board, and buggy power-management firmware on another. So, while building code for the CPU (which is usually a multi-core ARM) on a mobile SoC tends to be straightforward, building and integrating code that uses specialized co-processors and I/O interfaces is often an exercise in guesswork and frustration. This problem is exacerbated by the fact that while Linux is the default operating system of choice for many kinds of embedded systems, Android is the most important operating system in mobile devices. As a result, software development infrastructure for mobile processors is excellent for Android, but often spotty for Linux. Why aren’t mobile SoCs better supported for embedded systems? That’s a tale of two industries: the mobile chip business is driven by huge volumes, and is extremely concentrated (a few huge customers dominate demand). In contrast, the embedded systems business is driven by lower volumes (though with higher margins) spread across thousands of customers. Mobile chip suppliers are simply not staffed and organized to provide support for thousands of customers pursuing diverse applications. As growth opportunities shrink in mobile phones and tablets, however, some mobile processor suppliers are investing in embedded applications. Rather than try to quickly ramp up to engage with hundreds or thousands of customers, some suppliers are carefully choosing a modest number of embedded systems customers to support. That’s an understandable strategy – but to succeed with just a handful customers requires being able to pick the winners well ahead of the finish line – a difficult proposition. In contrast, suppliers with the fortitude to make the larger investments required to support large numbers of customers will be planting many seeds – and some of those seeds will grow into big opportunities.

Anzeige

Das könnte Sie auch interessieren

Das Unternehmen Sofradir, spezialisiert auf Infrarot(IR)-Detektoren für Luft- und Raumfahrt, Verteidigung und kommerzielle Märkte, hat eine Vertriebspartnerschaft mit dem französischen Unternehmen ATD Electronique bekannt gegeben. Ziel der Partnerschaft sei es, den europäischen Kundenstamm für Sofradirs Kurzwellen-Infrarot-SWIR-Detektoren zu erweitern und zu festigen.

www.ala.com

Anzeige

Bereits zum zehnten Mal hat Framos seine Vision Marktstudie durchgeführt, an der 90 Personen aus 22 Länder teilnahmen. Dabei wurden Einsatzbranchen, Technologie und Bekanntheitsgrade abgefragt. Bei den Kameras ist Sony (67%) vor Baumer und Basler (jeweils 54%) am bekanntesten, bei den Objektiven behauptet Edmund Optics (66%) vor Zeiss (62%) sowie Tamron und Computar (beide jeweils 43%) die Spitzenposition. Die kompletten Ergebnisse der Marktstudie können bei Framos angefordert werden.

www.framos.de

Die neue Generation der prismabasierten Multi-CMOS-Sensor Flächenkameraserie Apex hebt die Farbabbildung auf eine neues Niveau. Mit einem optimierten dichroitischen Prisma und der neuen Sony Pregius CMOS Generation mit Global Shutter Technologie ist die Kameraserie auf dem modernsten Stand der Farbbildgebung.

Anzeige

www.jai.com

Anzeige

Die Messsoftware Metrolog 3D erfasst und analysiert systemübergreifend Daten und visualisiert anschließend alle Arten von 3D-Messungen. Die neue Version X4 wurde entwickelt, um mit einer einzigen Softwareplattform mit jeder Art von System und Technologie der Messtechnik arbeiten zu können.‣ weiterlesen

www.metrologicgroup.fr

Anzeige

Für einige ist künstliche Intelligenz (KI) ein Segen, für andere ein Fluch. Wo Sie sich dabei einordnen, hängt in hohem Maß davon ab, ob Sie der Angst ausgesetzt sind, in Kürze Ihren Job an einen modernen C-3PO zu verlieren. Trotzdem müssen wir alle der Realität ins Auge blicken – eine Realität, die keine menschliche Interaktion erfordert.‣ weiterlesen

www.teledynedalsa.com

Das ADLVIS-1700-System unterstützt zwei CXP-6-Ports (1.250MB/s) oder einen vierkanaligen Camera Link-Port (bis zu 680MB/s). Mit bis zu vier wechselbaren 2,5″ SATA 6Gb/s SSDs und RAID-0/1/5/10-Support kombiniert es einen IPC mit wechselbaren CXP- oder CL-Bildverarbeitungskarten und einem großen und schnellen Massenspeicher. Dadurch werden hohe Schreib- und Lesegeschwindigkeiten erzielt und die einfache Entnahme der Laufwerke im Betrieb ermöglicht. Das Schnittstellenangebot umfasst in der Standard-Ausstattung zwei Gigabit-LAN-, zwei USB2.0- und zwei COM-Ports. Über den internen PCIe/104-Bus bestehen Erweiterungsmöglichkeiten, u.a. vier Gigabit-LANs, vier USB3.0-Ports und vier mPCIe-Carrier.

www.adl-europe.com

Anzeige