Anzeige

Alternativer 3D-Blick

3D-Radarbildgebung mit Millimeterwellen-Technologie

Neueste Millimeterwellen-Radartechnologie bietet in vielen Applikationen einen, im Vergleich zu herkömmlichen optischen Kameras, alternativen oder ergänzenden Blick auf herausfordernde Applikationen in einem Bereich des Spektrums, der manch verstecktes Detail offenbart.

 3D-Radarscan mit Millimeterwellen eines Geh?uses mit SAR-Fokussierung, direkt durch einen Plexiglasdeckel. (Bild: ?Timo Jaeschke)

3D-Radarscan mit Millimeterwellen eines Gehäuses mit SAR-Fokussierung, direkt durch einen Plexiglasdeckel. (Bild: ©Timo Jaeschke)

Die Fortschritte in der Silizium-Germanium (SiGe) Technologie für Millimeterwellen-Radarsysteme, die in den letzten Jahren durch die Sensorik für das autonome Fahren erzielt wurden, führen mittlerweile zur Verfügbarkeit von günstigen und industrietauglichen Sensoren im Frequenzbereich bis 300GHz mit immer größeren Bandbreiten. Diese ermöglichen es, die dielektrischen Eigenschaften von Materialien sichtbar zu machen. Dabei dringen die Wellen in viele nicht elektrisch leifähigen Medien ein. Zudem sind Millimeterwellen robust gegen Staub, Dampf/Nebel sowie dielektrische Materialien mit geringer relativer Permittivität, da diese Materialien durchdrungen werden. Metallbeschichtungen, dicke Wasserfilme oder wasserhaltige Materialien führen allerdings zur Totalreflexion. So ist die Untersuchung durch Papier-/Plastik-Verpackungen möglich (Bild 2). Auch gefrorene wasserhaltige Lebensmittel wie Tiefkühlpizzen lassen sich in der Verpackung auf Fremdkörper untersuchen, wobei neben metallischen auch dielektrische Fremdkörper (z.B. Kunststoff) erkannt werden. Besonders Übergänge zwischen unterschiedlichen dielektrischen Materialien führen durch die unterschiedlichen Reflexionseigenschaften zu starken Phasensprüngen in den Bildern, so dass die Detektion von Fremdkörpern möglich ist. Während bei 80GHz die Wellen bei den meisten Materialien eine gute Durchdringung, aber oft nicht ausreichende Auflösung aufweisen, führen höhere Frequenzen z.B. bei 240GHz in der Radarbildgebung zu einem aufgelösten und detailreicheren Bild mit guter Trennbarkeit der Reflexionen und für viele Anwendungen ausreichender Durchdringung. Die Nutzung des FMCW-Radarverfahrens erlaubt zudem eine präzise Höhen- bzw. Entfernungsvermessung von Gegenständen und das Erkennen von Reflexionen an kleinsten Defektstellen in reflektierenden Oberflächen. Die Auswertung von spektralen oder frequenzselektiven Effekten im Frequenzbereich und die Bestimmung der Permittivität ermöglichen die Gewinnung zusätzlicher Informationen über das Objekt und seine Materialien.

3D-Radarscanner bei 240GHz:
direkt durch die Verpackung aufgenommene
Nussschokolade (Bild: ©Timo Jaeschke)

USB-Radarsensor bei 240GHz

In Zusammenarbeit zwischen dem Fraunhofer FHR und der Ruhr-Universität Bochum wurde ein miniaturisierter USB Radarsensor bei 240GHz mit einer spektralen Bandbreite von bis zu 61GHz entwickelt. Durch meanderförmige mechanische Scanbewegungen des Sensors mit einer fokussierten Linsenantenne ist auch die Aufnahme von 3D-Bildern möglich. Der mechanische Scan ist zur schnelleren Abbildung auf Grund der günstigen Sensorkosten auch durch eine vollbesetzte Scanzeile auf einem Förderband machbar. Dabei wird die Fokussierung in Bewegungsrichtung des Bandes mittels Synthetischer Apertur Radarverfahren (SAR) durchgeführt, analog zur Radarbildgebung mittels Satellit oder Flugzeug. Dadurch erreicht man gegenüber einer Fokuslinse eine rechnerische Fokussierung in allen Höhenebenen. So lassen sich auch größere 3D-Objekte wie ein Gehäuse (Bild 1) in allen Ebenen fokussiert darstellen. Das Objekt wurde dabei direkt durch den Plexiglasdeckel aufgenommen. Dank Millimeterwellen ist dies auch durch gefärbte Plexiglasdeckel möglich, die mit sichtbarem Licht nicht untersuchbar sind. Auch eine Materialcharakterisierung ist möglich: das Fraunhofer FHR setzt im Projekt Blackvalue erfolgreich eine Radar-Scanzeile in Kombination mit Kamerasystemen und Deep-Learning Algorithmen zur sortenreinen Trennung von schwarzen Kunststoffen im Recyclingprozess ein.

Millimeterwellen MIMO-Kamera

Bei Applikationen die keine Bewegung des abzubildenden Objektes erlauben, ist zur Erzeugung eines 3D-Bildes eine technisch aufwändige mit vielen Sende- und Empfangskanälen besetzte 2D-Radarapertur notwendig. Neueste Forschungen ermöglichen die Nutzung von teilbesetzten MIMO-Arrays mit z.B. 32 Kanälen, die durch den Einsatz der kostengünstigen SiGe-Chip-Technologie die Realisierung von 3D-Radarkameras ermöglichen. Bild 3 zeigt einen ersten Prototypen einer Achtkanal MIMO-Radarkamera des Fraunhofer FHR zur Bildgebung. Diese erlaubt die Navigation von Search- & Rescue-Robotern nach Katastrophenfällen in verrauchten Umgebungen, kann aber auch in anderen Applikationen in denen optische Systeme versagen, z.B. Stahlwerken in denen es besonders im Winter zu starker Dampfbildung kommt, zur Bildgebung eingesetzt werden.

Anzeige

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Die Smart PLC Unit ist eine Industriesteuerung zur Messwertverrechnung für die Laser-Scanner scanControl Smart und Gapcontrol. Die ermittelten Messwerte werden über die Unit verrechnet, angezeigt, protokolliert und können an übergeordnete Steuerungen weitergegeben werden. Dafür stehen analoge und digitale Schnittstellen zur Verfügung. Bis zu acht Laserscanner lassen sich an anschließen. Dies ist bei vielen Anwendungen, wie beispielsweise Konturvermessungen an großen Bauteilen notwendig.

www.micro-epsilon.de

Anzeige

Das Interferometer µPhase basiert auf dem Twyman-Green-Prinzip und vermisst hochpräzise Abweichungen in Planität und Sphärizität, mit einer Genauigkeit bis zu 0.01µm. Die berührungsfreie Messung und Auswertung erfolgt dabei großflächig innerhalb von Sekunden. ‣ weiterlesen

Anzeige

www.trioptics.com

Anzeige

Das integrierte Messsystem Duo Vario bietet zwei Messverfahren: das Konfokale und die Fokusvariation, für eine Oberflächenanalyse von Rauheit sowie Konturmessungen. Mit dem konfokalen Verfahren können stark reflektierende Oberflächen rückführbar auf herstellerunabhängige Raunormale gemessen werden. Mit dem neuen Gerät ist dies nun auch mit einem größeren Bildfeld und mit einer höheren lateralen Auflösung möglich. Das Fokusvariationsverfahren ist vor allem für die Messung von Formen und Konturen vorteilhaft. Dabei beträgt der Akzeptanzwinkel über 85°.

www.confovis.com

Anzeige

Die Maxshot 3D-Fotogrammetrie-Kamera verbindet eine einfache Bedienung und Genauigkeit mit umfangreichen Größenmessprojekten. Sie kann als einzelnes Messgerät aber auch in Kombination mit Creaforms 3D-Scannern und tragbaren KMMs verwendet werden. Das Gerät ist 40% präziser als der Vorgänger und hat eine volumetrische Genauigkeit von bis zu 0,015mm/m. Eine visuelle Projektion mit Echtzeit-Feedback direkt auf dem Teil, leitet den Nutzer zu der richtigen Position für die Aufnahme.

www.creaform3d.com

Anzeige

Die QIPAK 6.1 Software für das Messsystem Quick Image wartet mit einer Stitching-Funktion für einen großen Messbereich auf. Ein oder mehrere Werkstücke lassen sich mit dem System innerhalb von Sekunden wiederholbar messen. Dank der Software bedarf es nur eines einzigen Mausklicks, um das Werkstück im Sichtfeld automatisch zu erkennen und die Messung zu starten. Im Fall von Werkstücken, die größer ausfallen als der Bildbereich, erfasst das System bei der Messtischbewegung mehrere Bilder und fügt die einzelnen Aufnahmen zusammen.

www.mitutoyo.de

Anzeige

Speziell für die Anwendung in der Automobilindustrie wurden die Planflächenprüfsysteme Gageline IPS F100 3D und IPS F200 3D entwickelt, die dank Kamera- und Beleuchtungstechnik, einer adaptiven, dynamischen Maskierung und hoher Auflösung eine 100%-Prüfung von Planflächen in Linientaktzeit sicher durchführen. Mit der Multi-Bilderfassung können nicht nur wahre Defekte und Trockenränder des vorgelagerten Waschprozesses unterschieden werden, sondern es werden auch Angaben zu Höhendaten ermittelt. Der Prüfbereich ist sowohl in Breite und Länge nahezu unbegrenzt

www.jenoptik.de

Anzeige

Lapp ergänzt sein Etherline-Portfolio um die erste torsionsfähige und Profinet-konforme Cat. 7 Hochgeschwindigkeitsleitung der Welt. Die Etherline Torsion Cat 7 erreicht Datenraten nach Cat. 7, also 10GBit/s im Frequenzband bis 600MHz. Sie lässt sich auf einer Länge von 1m um 180° in beide Richtungen tordieren und das mindestens fünf Millionen Mal. Das Kabel kommt ohne Füller aus, die Adern werden nur von einem Trennkreuz aus Polyethylen am Platz gehalten, was die Konfektion erleichtert.

www.lappkabel.de

Anzeige

Der europäische Bildverarbeitungsverband EMVA plant erstmals vom 12. bis 13. Oktober zusammen mit der Messe Stuttgart die Ausrichtung der Embedded Vision Europe (EVE) Conference in Stuttgart. Über die Ziele und Inhalte der Veranstaltung sprach inVISION mit Gabriele Jansen, Mitglied im ehrenamtlichen Vorstand der EMVA und Geschäftsführerin von Vision Ventures. ‣ weiterlesen

Anzeige

www.embedded-vision-emva.org

Anzeige

Für die optische Leiterplatteninspektion (AOI) in 3D mit 24 Bit Farbauflösung nutzt das japanische Unternehmen MEK Marantz Electronics den externen Framegrabber LightBridge. Das Bildverarbeitungsgerät erlaubt die Anbindung des AOI-Inspektionsgerätes über Thunderbolt an den Host-PC unter dem Apple-Betriebssystem Mac OSX. Die speziellen Prüfaufgaben wurden auf dem FPGA von LightBridge mit VisualApplets individuell programmiert, ganz ohne Hardware-Programmierkenntnisse einzusetzen. ‣ weiterlesen

Anzeige

www.silicon-software.de

Anzeige

Der In-Sight Laser-Profiler ist ein einfach zu bedienendes Messsystem zum Prüfen von Werkstückmaßen. Die Bildverarbeitungswerkzeuge, die präzise Objekterkennung und die Easybuilder Schnittstelle machen ihn zu einem hochpräzisen Werkzeug zum Messen von Höhe, Abstand, Position und Winkeln und zum Erkennen von Oberflächendefekten. Das Gerät kombiniert eine einfach zu bedienende Schnittstelle mit dem VC200 Vision Controller, gemeinsam mit der Präzision der 3D-Laser-Displacement Technologie.

www.cognex.de