Anzeige
Anzeige

3D-Radarbildgebung mit Millimeterwellen-Technologie

Alternativer 3D-Blick

Neueste Millimeterwellen-Radartechnologie bietet in vielen Applikationen einen, im Vergleich zu herkömmlichen optischen Kameras, alternativen oder ergänzenden Blick auf herausfordernde Applikationen in einem Bereich des Spektrums, der manch verstecktes Detail offenbart.

 3D-Radarscan mit Millimeterwellen eines Geh?uses mit SAR-Fokussierung, direkt durch einen Plexiglasdeckel. (Bild: Timo Jaeschke)

3D-Radarscan mit Millimeterwellen eines Gehäuses mit SAR-Fokussierung, direkt durch einen Plexiglasdeckel. (Bild: Timo Jaeschke)

Die Fortschritte in der Silizium-Germanium (SiGe) Technologie für Millimeterwellen-Radarsysteme, die in den letzten Jahren durch die Sensorik für das autonome Fahren erzielt wurden, führen mittlerweile zur Verfügbarkeit von günstigen und industrietauglichen Sensoren im Frequenzbereich bis 300GHz mit immer größeren Bandbreiten. Diese ermöglichen es, die dielektrischen Eigenschaften von Materialien sichtbar zu machen. Dabei dringen die Wellen in viele nicht elektrisch leifähigen Medien ein. Zudem sind Millimeterwellen robust gegen Staub, Dampf/Nebel sowie dielektrische Materialien mit geringer relativer Permittivität, da diese Materialien durchdrungen werden. Metallbeschichtungen, dicke Wasserfilme oder wasserhaltige Materialien führen allerdings zur Totalreflexion. So ist die Untersuchung durch Papier-/Plastik-Verpackungen möglich (Bild 2). Auch gefrorene wasserhaltige Lebensmittel wie Tiefkühlpizzen lassen sich in der Verpackung auf Fremdkörper untersuchen, wobei neben metallischen auch dielektrische Fremdkörper (z.B. Kunststoff) erkannt werden. Besonders Übergänge zwischen unterschiedlichen dielektrischen Materialien führen durch die unterschiedlichen Reflexionseigenschaften zu starken Phasensprüngen in den Bildern, so dass die Detektion von Fremdkörpern möglich ist. Während bei 80GHz die Wellen bei den meisten Materialien eine gute Durchdringung, aber oft nicht ausreichende Auflösung aufweisen, führen höhere Frequenzen z.B. bei 240GHz in der Radarbildgebung zu einem aufgelösten und detailreicheren Bild mit guter Trennbarkeit der Reflexionen und für viele Anwendungen ausreichender Durchdringung. Die Nutzung des FMCW-Radarverfahrens erlaubt zudem eine präzise Höhen- bzw. Entfernungsvermessung von Gegenständen und das Erkennen von Reflexionen an kleinsten Defektstellen in reflektierenden Oberflächen. Die Auswertung von spektralen oder frequenzselektiven Effekten im Frequenzbereich und die Bestimmung der Permittivität ermöglichen die Gewinnung zusätzlicher Informationen über das Objekt und seine Materialien.

3D-Radarscanner bei 240GHz: direkt durch die Verpackung aufgenommene Nussschokolade (Bild: Timo Jaeschke/Fraunhofer FHR) 3D-Radarscanner bei 240GHz: direkt durch die Verpackung aufgenommene Nussschokolade (Bild: Timo Jaeschke/Fraunhofer FHR)

USB-Radarsensor bei 240GHz

In Zusammenarbeit zwischen dem Fraunhofer FHR und der Ruhr-Universität Bochum wurde ein miniaturisierter USB Radarsensor bei 240GHz mit einer spektralen Bandbreite von bis zu 61GHz entwickelt. Durch meanderförmige mechanische Scanbewegungen des Sensors mit einer fokussierten Linsenantenne ist auch die Aufnahme von 3D-Bildern möglich. Der mechanische Scan ist zur schnelleren Abbildung auf Grund der günstigen Sensorkosten auch durch eine vollbesetzte Scanzeile auf einem Förderband machbar. Dabei wird die Fokussierung in Bewegungsrichtung des Bandes mittels Synthetischer Apertur Radarverfahren (SAR) durchgeführt, analog zur Radarbildgebung mittels Satellit oder Flugzeug. Dadurch erreicht man gegenüber einer Fokuslinse eine rechnerische Fokussierung in allen Höhenebenen. So lassen sich auch größere 3D-Objekte wie ein Gehäuse (Bild 1) in allen Ebenen fokussiert darstellen. Das Objekt wurde dabei direkt durch den Plexiglasdeckel aufgenommen. Dank Millimeterwellen ist dies auch durch gefärbte Plexiglasdeckel möglich, die mit sichtbarem Licht nicht untersuchbar sind. Auch eine Materialcharakterisierung ist möglich: das Fraunhofer FHR setzt im Projekt Blackvalue erfolgreich eine Radar-Scanzeile in Kombination mit Kamerasystemen und Deep-Learning Algorithmen zur sortenreinen Trennung von schwarzen Kunststoffen im Recyclingprozess ein.

Millimeterwellen MIMO-Kamera

Bei Applikationen die keine Bewegung des abzubildenden Objektes erlauben, ist zur Erzeugung eines 3D-Bildes eine technisch aufwändige mit vielen Sende- und Empfangskanälen besetzte 2D-Radarapertur notwendig. Neueste Forschungen ermöglichen die Nutzung von teilbesetzten MIMO-Arrays mit z.B. 32 Kanälen, die durch den Einsatz der kostengünstigen SiGe-Chip-Technologie die Realisierung von 3D-Radarkameras ermöglichen. Bild 3 zeigt einen ersten Prototypen einer Achtkanal MIMO-Radarkamera des Fraunhofer FHR zur Bildgebung. Diese erlaubt die Navigation von Search- & Rescue-Robotern nach Katastrophenfällen in verrauchten Umgebungen, kann aber auch in anderen Applikationen in denen optische Systeme versagen, z.B. Stahlwerken in denen es besonders im Winter zu starker Dampfbildung kommt, zur Bildgebung eingesetzt werden.

Anzeige

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Mit einem Dual-Sensor-System für korrelationsfreies Messen in automatisierten Fertigungsstraßen können Anwender jetzt auf den Einsatz eines Koordinatenmessgeräts verzichten. Hochauflösende Kameras, direkt in der jeweiligen Produktionszelle montiert, ermitteln die exakte Position des Roboters innerhalb eines übergeordneten Koordinatensystems.

www.isravision.com

Anzeige

Der FireBird Single CoaXPress Low Profile Framegrabber wurde kostenoptimiert, ist aber mit allen Funktionen der FireBird-Boards ausgestatet. Das Low-Profile-Design erlaubt die Verwendung in 2HE/2U-Gehäusen. Eine Abschlussblende in voller Höhe für Standard-PC-Gehäuse ist ebenfalls verfügbar.

www.activesilicon.com

Anzeige

Bild: ICP Deutschland GmbH

Kompakt, hochauflösend und ein ausgeklügeltes Kühl- und Montagekonzept zeichnen das neue Epic Embedded Board Nano-GLX aus. Highlight ist die AMD Power, die in der integrierten Dual Core GX-210KL CPU steckt. Die geringe Abwärme von 4,5W bietet optimale Voraussetzungen für die Entwicklung thermisch anspruchsvoller Embedded Systeme. Die bis zu 8GB DDR3 oder DDR3L SDRAM sorgen für ausreichend Arbeitsspeicher. Der Anschluss zweier unabhängiger Displays ist mittels VGA, LVDS oder HDMI Schnittstelle möglich, wobei letztere eine Auflösung von bis zu 4K UHD dank integrierter AMD RadeonTM R1E GCU Grafik bietet.

www.icp-deutschland.de

Anzeige

Flir hat sich mit verschiedenen Branchenführern wie Bodkin Design & Engineering (BD&E) zusammengeschlossen, um zukünftig hyperspektrale Bildgebungslösungen anzubieten zu können. In Kombination mit verschiedenen IR-Kameratechnologien können die Systeme für das sichtbare, NIR-, SWIR-, MWIR- oder LWIR-Band optimiert werden.

www.flir.com

Kolektor ALS (Adaptive Light Source) designs machine vision lighting especifically for creating different lighting conditions using one single component. It features ethernet connectivity and an OPC UA interface with a dedicated API for simple integration into any machine vision system.

www.kolektorvision.com

Anzeige

Das zweiteilige Beleuchtungs-Demo- und Labor-Kit beinhaltet alle nötigen Beleuchtungskomponenten, um neue Anwendungen im Labor zu testen und deren Beleuchtung optimal abzustimmen. Der Preis ist um die Hälfte günstiger als die Summe der Einzelkomponenten.

www.polytec.de

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige