Anzeige

3D-Radarbildgebung mit Millimeterwellen-Technologie

Alternativer 3D-Blick

Neueste Millimeterwellen-Radartechnologie bietet in vielen Applikationen einen, im Vergleich zu herkömmlichen optischen Kameras, alternativen oder ergänzenden Blick auf herausfordernde Applikationen in einem Bereich des Spektrums, der manch verstecktes Detail offenbart.

 3D-Radarscan mit Millimeterwellen eines Geh?uses mit SAR-Fokussierung, direkt durch einen Plexiglasdeckel. (Bild: Timo Jaeschke)

3D-Radarscan mit Millimeterwellen eines Gehäuses mit SAR-Fokussierung, direkt durch einen Plexiglasdeckel. (Bild: Timo Jaeschke)

Die Fortschritte in der Silizium-Germanium (SiGe) Technologie für Millimeterwellen-Radarsysteme, die in den letzten Jahren durch die Sensorik für das autonome Fahren erzielt wurden, führen mittlerweile zur Verfügbarkeit von günstigen und industrietauglichen Sensoren im Frequenzbereich bis 300GHz mit immer größeren Bandbreiten. Diese ermöglichen es, die dielektrischen Eigenschaften von Materialien sichtbar zu machen. Dabei dringen die Wellen in viele nicht elektrisch leifähigen Medien ein. Zudem sind Millimeterwellen robust gegen Staub, Dampf/Nebel sowie dielektrische Materialien mit geringer relativer Permittivität, da diese Materialien durchdrungen werden. Metallbeschichtungen, dicke Wasserfilme oder wasserhaltige Materialien führen allerdings zur Totalreflexion. So ist die Untersuchung durch Papier-/Plastik-Verpackungen möglich (Bild 2). Auch gefrorene wasserhaltige Lebensmittel wie Tiefkühlpizzen lassen sich in der Verpackung auf Fremdkörper untersuchen, wobei neben metallischen auch dielektrische Fremdkörper (z.B. Kunststoff) erkannt werden. Besonders Übergänge zwischen unterschiedlichen dielektrischen Materialien führen durch die unterschiedlichen Reflexionseigenschaften zu starken Phasensprüngen in den Bildern, so dass die Detektion von Fremdkörpern möglich ist. Während bei 80GHz die Wellen bei den meisten Materialien eine gute Durchdringung, aber oft nicht ausreichende Auflösung aufweisen, führen höhere Frequenzen z.B. bei 240GHz in der Radarbildgebung zu einem aufgelösten und detailreicheren Bild mit guter Trennbarkeit der Reflexionen und für viele Anwendungen ausreichender Durchdringung. Die Nutzung des FMCW-Radarverfahrens erlaubt zudem eine präzise Höhen- bzw. Entfernungsvermessung von Gegenständen und das Erkennen von Reflexionen an kleinsten Defektstellen in reflektierenden Oberflächen. Die Auswertung von spektralen oder frequenzselektiven Effekten im Frequenzbereich und die Bestimmung der Permittivität ermöglichen die Gewinnung zusätzlicher Informationen über das Objekt und seine Materialien.

3D-Radarscanner bei 240GHz: direkt durch die Verpackung aufgenommene Nussschokolade (Bild: Timo Jaeschke/Fraunhofer FHR) 3D-Radarscanner bei 240GHz: direkt durch die Verpackung aufgenommene Nussschokolade (Bild: Timo Jaeschke/Fraunhofer FHR)

USB-Radarsensor bei 240GHz

In Zusammenarbeit zwischen dem Fraunhofer FHR und der Ruhr-Universität Bochum wurde ein miniaturisierter USB Radarsensor bei 240GHz mit einer spektralen Bandbreite von bis zu 61GHz entwickelt. Durch meanderförmige mechanische Scanbewegungen des Sensors mit einer fokussierten Linsenantenne ist auch die Aufnahme von 3D-Bildern möglich. Der mechanische Scan ist zur schnelleren Abbildung auf Grund der günstigen Sensorkosten auch durch eine vollbesetzte Scanzeile auf einem Förderband machbar. Dabei wird die Fokussierung in Bewegungsrichtung des Bandes mittels Synthetischer Apertur Radarverfahren (SAR) durchgeführt, analog zur Radarbildgebung mittels Satellit oder Flugzeug. Dadurch erreicht man gegenüber einer Fokuslinse eine rechnerische Fokussierung in allen Höhenebenen. So lassen sich auch größere 3D-Objekte wie ein Gehäuse (Bild 1) in allen Ebenen fokussiert darstellen. Das Objekt wurde dabei direkt durch den Plexiglasdeckel aufgenommen. Dank Millimeterwellen ist dies auch durch gefärbte Plexiglasdeckel möglich, die mit sichtbarem Licht nicht untersuchbar sind. Auch eine Materialcharakterisierung ist möglich: das Fraunhofer FHR setzt im Projekt Blackvalue erfolgreich eine Radar-Scanzeile in Kombination mit Kamerasystemen und Deep-Learning Algorithmen zur sortenreinen Trennung von schwarzen Kunststoffen im Recyclingprozess ein.

Millimeterwellen MIMO-Kamera

Bei Applikationen die keine Bewegung des abzubildenden Objektes erlauben, ist zur Erzeugung eines 3D-Bildes eine technisch aufwändige mit vielen Sende- und Empfangskanälen besetzte 2D-Radarapertur notwendig. Neueste Forschungen ermöglichen die Nutzung von teilbesetzten MIMO-Arrays mit z.B. 32 Kanälen, die durch den Einsatz der kostengünstigen SiGe-Chip-Technologie die Realisierung von 3D-Radarkameras ermöglichen. Bild 3 zeigt einen ersten Prototypen einer Achtkanal MIMO-Radarkamera des Fraunhofer FHR zur Bildgebung. Diese erlaubt die Navigation von Search- & Rescue-Robotern nach Katastrophenfällen in verrauchten Umgebungen, kann aber auch in anderen Applikationen in denen optische Systeme versagen, z.B. Stahlwerken in denen es besonders im Winter zu starker Dampfbildung kommt, zur Bildgebung eingesetzt werden.

Anzeige

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Die Basler AG übernimmt mit sofortiger Wirkung 100% der Anteile der Silicon Software GmbH. Die beiden Geschäftsführer Dr. Klaus-Henning Noffz (l.) und Dr. Ralf Lay (r.) werden zukünftig für die Silicon Software GmbH und die Basler AG tätig sein.

www.baslerweb.com

Anzeige

(Bild: Carl Zeiss AG)

Vom 14. bis 15. November findet in Oberkochen die Zeiss Xray Insights 2018 statt. Dabei geht es um die neuesten Entwicklungen aus den Bereichen CT und Röntgentechnologie zur Qualitätssicherung und Prozesskontrolle.

www.zeiss.de

Anzeige

Der Hersteller von 3D-Mess- und Bildverarbeitungslösungen Faro hat die Übernahme von Opto-Tech s.r.l. und seiner Tochtergesellschaft Open Technologies bekannt gegeben.

www.faro.com

Anzeige

Excelitas Technologies hat den Erwerb von Research Electro Optics aus Boulder, USA, abgeschlossen. Das Unternehmen ist auf die Serienfertigung von hochpräzisen Optikkomponenten und -baugruppen, optischer Dünnfilmbeschichtungen und HeNe-Hochleistungslasern spezialisiert.

www.excelitas.com

(Bild: InfraTec GmbH)

Infratec beteiligt sich mit sieben weiteren europäischen Partnern im Rahmen des EU-Forschungsprojektes Spirit an der Weiterentwicklung von Inspektionsrobotertechnologien der nächsten Generation. In dem auf drei Jahre angesetzten Projekt im Rahmen des EU-Programmes Horizont 2020 soll eine Systemlösung entstehen, die mit unterschiedlichster Prüftechnik ausgestattet werden kann. Infratec stellt dazu sein Technik-Know-how rund um die Thermografieprüfung zur Verfügung.

www.infratec.de

Bild: Vision Engineering Ltd.

Vision Engineering feiert diesen Monat sein 60-jähriges Firmenjubiläum. Der Hersteller von Systemen für die Fertigungskontrolle und berührungslose Messsysteme wurde 1958 von Rob Freeman in Großbritannien gegründet, der aufgrund seiner Erfahrungen als Werkzeugmacher im Jaguar-Rennstall das erste Endoskop für die Inspektion von Motorinnenteilen des Unternehmens entwickelte. Vision Engineering beschäftigt heute mehr als 220 Mitarbeiter.

www.visioneng.us

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige