Lichtfeldkamera im OP

3D-Lichtfeld-Kamera steuert OP-Roboter

Autonomer OP-Roboter

An einfache autonome Roboter, wie Staubsauger oder Rasenmäher hat man sich inzwischen gewöhnt. Chirurgische Eingriffe durch einen autonomen Roboter erscheinen dagegen noch eher als Science-Fiction. Eine Forschungsgruppe vom Sheikh Zayed Institute for Pediatric Surgical Innovation am Children’s National Health System in Washington DC und Johns Hopkins Universität in Baltimore, haben nun eine Hürde auf dem Weg zum autonomen OP-Roboter genommen. Ihr ‚Smart Tissue Autonomous Robot‘ (Star) ist der erste Roboter, der weiches Gewebe autonom nähen kann – und das auch noch besser als ein Chirurg.

 (Bild: Raytrix GmbH)

(Bild: Raytrix GmbH)


Die Forscher verstehen ihr System vor allem als Demonstration, dass diese Art von Eingriff durch ein Robotersystem möglich ist. Der Weg, bevor ein solches System tatsächlich in den klinischen Einsatz kommen könnte, ist allerdings noch weit. In den Versuchen wurde Star auch lediglich halb-autonom betrieben: Ein begleitender Chirurg musste jeden Stich der Naht freigeben, bevor dieser von dem System durchgeführt wurde. Außerdem konnte der Chirurg vor jeder Aktion des Roboters eingreifen, was in ca. 40 Prozent der Fälle auch nötig war, um z.B. den Faden zu halten. Das Resultat kann sich hingegen sehen lassen: Die mit dem Roboter erzeugte Naht war gleichmäßiger und konnte höheren Drücken standhalten, als die von einem Chirurgen manuell erzeugte Naht. Das chirurgische Instrument zum Nähen ist über einen Kraftsensor an einem Kuka-Roboterarm befestigt. Das zu nähende Gewebe ist von einem Chirurgen vorbereitet worden, um den Nahtbereich grob zu fixieren. Während des Nähvorgangs verändert sich die Form und Lage des Nahtbereiches, da jeder Nahtpunkt die Spannungen im Gewebe selbst verändert. Ein weiterer, vorbereitender Schritt, der von einem Chirurgen durchgeführt wird, ist es die Eckpunkte der geplanten Naht mit fluoreszierenden Markierungen zu versehen. Die Marker, die im nahen Infrarotbereich fluoreszieren, werden mit einer 2D-Infrarotkamera aufgenommen und zu der von einer 3D-Lichtfeldkamera aufgenommen 3D-Oberfläche registriert. Dadurch kann jedem Marker eine 3D-Position zugeordnet werden. Zwischen diesen Markerpunkten plant die von den Forschern entwickelte Software dann selbstständig die Positionen der einzelnen Einstichpunkte. Da sich nach jedem Stich die Lage und Form der Oberfläche verändern kann, muss die Lage der Nahtpunkte kontinuierlich neu berechnet werden. Die fluoreszierenden Marker werden von der Infrarotkamera mit 30Hz aufgenommen und durch einen Tracking-Algorithmus verfolgt. Die 3D-Lichtfeldkamera lieferte die neue Oberflächendaten mit 10Hz.

Anzeige

Funktionsweise Lichtfeldkamera

Bei einer Lichtfeldkamera erzeugt das Hauptobjektiv ein räumliches Zwischenbild des Objektes. Ein vor dem Bildsensor eingebrachtes Mikrolinsenarray agiert nun wie ein Mikro-Kamera-Array, wobei jede Mikrolinse aus einer unterschiedlichen Perspektive einen Teil des Zwischenbildes auf den Bildsensor abbildet. Jedes Mikrobild hat dabei typischerweise einen Durchmesser von 20 bis 40 Pixeln. Da jedes Mikrobild aus einer leicht anderen Perspektive aufgenommen wird, kann man die 3D-Form des Zwischenbildes mit Verfahren ähnlich denen von Stereo-Kamerasystemen berechnen. Durch eine zusätzliche metrische Kalibrierung ergibt sich dann die 3D-Form des Objektes. Die Verwendung einer Lichtfeldkamera ist besonders dann von Vorteil, wenn relativ kleine Bildfelder abzubilden sind. Durch die spezielle Mikrolinsentechnologie vergrößert sich zudem noch der Schärfentiefe-Bereich im Vergleich zu einer 2D-Kamera. Axel Krieger vom Children’s National Health System sagt zur Wahl einer Lichtfeldkamera als 3D-Sensor: „Wir haben eine Lichtfeldkamera gewählt, da wir eine Genauigkeit von einem Millimeter in einem dynamischen, operativen Bildfeld benötigen. Die Pixeldichte, Bildrate und Genauigkeit der Lichtfeldkamera waren ideal für unsere Anwendung. Die Kamera lieferte sehr gute Ergebnisse beim nassen und reflektierenden Gewebe.“ In einem Vergleichstest zwischen mehreren Chirurgen und dem Star-System beim Nähen an Gewebestücken ex vivo und an narkotisierten Schweinen in vivo hat sich gezeigt, dass das System die Abstände der Nahtstiche gleichmäßiger setzt als die Chirurgen. Dadurch konnten die Nähte höheren Drücken standhalten bevor sie undicht wurden. Die Anzahl der Fehler, die von den Chirurgen und von Star gemacht wurden, waren vergleichbar. Das Systems ist allerdings noch ein ganzes Stück langsamer als ein Chirurg. Ein Grund dafür ist auch, dass Star absichtlich langsam lief, damit ein manuelles Eingreifen möglich war. In einem voll autonomen Modus wäre eine wesentlich höhere Geschwindigkeit erreichbar. Die nächste Herausforderung, die die Forscher nun angehen wollen, ist es einen Roboter zu bauen, der Gewebe operativ entfernen kann. Das Team überlegt auch auf Basis ihrer Entwicklung ein den Chirurgen unterstützendes Robotersystem für klinische Anwendung zusammen mit einem Investor zu entwickeln. Ein vollständig autonomer Roboter für die Chirurgie bleibt aber auf weiteres noch Science-Fiction.

Autonomer OP-Roboter
Bild: Raytrix GmbH


Das könnte Sie auch interessieren

Wie können komplette 3D-Daten erfasst, interne Defekte in Gussteilen erkannt und sogar deren 3D-Koordinaten bestimmt werden? Das Unternehmen Carl Zeiss Industrielle Messtechnik GmbH hat ein informatives Video veröffentlicht, in dem die Inline-Prozessinspektion mit dem Zeiss VoluMax in der Leichtmetallgießerei am BMW-Produktionsstandort Landshut veranschaulicht wird.

Anzeige

Klassische Wärmebildkameras benötigen einen mechanischen Shutter, mithilfe dessen ca. alle 2 bis 3 Minuten Referenzdaten zur Kalibrierung der Wärmebilddarstellung und der Temperaturmessung aufgenommen werden. Jedoch erzeugt das Schließen des Shutters ein Geräusch und die Videoaufzeichnung ist während dieser Zeit unterbrochen. Daher hat Tamron nun ein Shutter-loses Wärmebildkameramodul auf Basis eines amorphen Silikonwärmebildsensors entwickelt. Dieser Sensor verfügt über eine exzellente Temperaturwiedergabe selbst wenn sich seine eigene Temperatur verändert.

www.tamron.eu

Der Industriescanner VTCIS ist in der Lage, im Druckbild fehlende Nozzles bei einer Auflösung von 1.200dpi automatisch zu detektieren. Da der CIS (Compact Image Sensor) nicht das komplette Bild einzieht, sondern nur bestimmte Bereiche scannt, wird die Datenverarbeitung vereinfacht und die Datenmenge deutlich reduziert. Außerdem garantiert die integrierte Flüssigkeitskühlung Farbstabilität über den gesamten Druckprozess hinweg und schließt Farbabweichungen aus. Dank einer Zeilenrate von bis zu 250kHz und einer Abtastgeschwindigkeit von bis zu 20m/s ist der Scanner für sehr schnell laufende Druckprozesse bestens geeignet.

www.tichawa.de

Die neuesten Versionen der 3D-Kameras für Lasertriangulation erreicht Triangulationsraten von bis zu 68kHz. Die Kamera basiert dabei auf einem 2/3″ Hochgeschwindigkeitssensor von Cmosis, der auch bei schwachen Lichtverhältnissen eine hervorragende Leistung erbringt. Als Schnittstelle verwendet die 3D05 das standardisierte GigEVision-Interface. Für eine einfache Integration und Synchronisierung besitzt die Kamera eine komplette, in die Kamera integrierte Drehgeberschnittstelle (RS422 und HTL). Das HTL-Interface ermöglicht dabei auch einen stabilen und effizienten Einsatz in der Schwerindustrie oder Bereichen mit starken elektrischen Störquellen.

www.photonfocus.com

Sensoren bis zu 1/1.2 und 1″ wurde die HF-XA-5M Objektivserie von Fujinon entwickelt. Die Objektive erreichen eine konstant hohe Auflösung von 5MP über das gesamte Bildfeld – bei einem Pixelabstand von 3,45µm. Dies gilt bei offener Blende ebenso wie bei verschiedenen Arbeitsabständen. Mit 29,5mm Außendurchmesser eignen sich die Objektive für platzkritische Anwendungen.

www.polytec.de

Die Messsoftware Wave ist für den hochpräzisen Wegmesssensor IDS3010. Damit können Messdaten in Echtzeit analysiert, verarbeitet und ausgewertet werden. Die Software verfügt über verschiedene Funktionen zur Visualisierung und Analyse von Daten, beispielsweise können die angezeigten Messdaten vergrößert/verkleinert werden oder die Datenvisualisierung kann gestoppt werden, um bestimmte Zeitbereiche zu analysieren. Außerdem ist eine Live Fast-Fourier-Transformation von Messwerten implementiert.

www.attocube.com

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige