Anzeige
Anzeige

Choosing the right tool

Will deep learning displace all other CV techniques?

It’s remarkable to see the range of applications in which deep neural networks are proving effective – often, significantly more effective than previously known techniques. From speech recognition to ranking web search results to object recognition, each day brings a new product or paper with a new challenge tamed by deep learning.

Artificial neural networks are a subset of machine learning techniques, and deep neural networks are a subset of artificial neural networks. All of these machine learning techniques are used in computer vision - and for other fields. (Bild: Embedded Vision Alliance)

Artificial neural networks are a subset of machine learning techniques, and deep neural networks are a subset of artificial neural networks. All of these machine learning techniques are used in computer vision – and for other fields. (Bild: Embedded Vision Alliance)

Computer vision, of course, is a field with significant deep learning activity. Deep learning is particularly appealing for visual perception because image and video data is massive and rich with information, but is infinitely variable and often ambiguous. Researchers have demonstrated deep neural networks capable of classifying skin lesions as cancerous or benign with accuracy equivalent to that of dermatologists, and other deep networks are capable of reading lips with significantly higher accuracy than human lip readers. More recently, Shunsuke Saito, Lingyu Wei and colleagues have developed a deep-learning-based approach that generates photorealistic 3D models of human faces from a single 2D image. This naturally leads to the question: Will deep learning displace all other techniques for solving visual perception problems? While the power of deep learning is undeniable, I believe that other techniques will continue to be attractive. As in most fields, it’s a question of choosing the right tool for the job. With the current justifiable excitement around deep learning, one important point is that machine learning encompasses a vast range of techniques, of which neural networks are a subset (as shown in the figure). In turn, deep neural networks are a subset of a broader class of neural network techniques. In many cases, simpler machine learning techniques are effective. That’s fortunate, because deep learning has a deep appetite: massive amounts of data and compute power are needed for training deep networks, and substantial compute power is needed for running trained networks. Other machine learning techniques often get by with comparatively minuscule amounts of data and processing power. Well before the start of the current deep learning craze, a few pioneering researchers and companies, such as BrainChip and General Vision, were deploying what we might today call ’shallow learning‘ algorithms and processors to solve real-world problems ranging from fish identification to license-plate recognition. Today, there’s a huge rush to apply deep learning to every visual perception problem. But, particularly when development costs and deployment costs are considered, I think that in many cases, other techniques will prove preferable. The challenge for algorithm, system, and product developers will be how to discern which tasks call for deep learning, which call for other neural network techniques, which are best served by other machine learning approaches, and which are still appropriate for good old-fashioned hand-crafted algorithms. On September 7th there will be a full day course in Hamburg which provides the hands-on knowledge you need to develop deep learning computer vision applications with TensorFlow. For details see https://tensorflow.embedded-vision.com.

Anzeige
Choosing the right tool
Bild: Embedded Vision Alliance


Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Das Sensorunternehmen plant eine neue Firmenzentrale, die auf zwei Etagen eine Nutzfläche von rund 6.000m² bieten soll. Alle Mitarbeiter der lokalen Niederlassungen sollen so zukünftig in der Zentrale mit Sitz im Märkischen Gewerbepark Rosmart Platz finden.

www.technikredaktion.de

Anzeige

Hexagon hat den Softwareanbieter Spring Technologies übernommen. Das französische Unternehmen entwickelt seit 30 Jahren CNC-Lösungen für Werkzeugmaschinen rund um das Kernportfolio NCSIMUL, das weltweit bei OEMs und Zulieferern verwendet wird, um den Produktionsprozess zu beschleunigen. Zukünftig wird Spring der Hexagon Manufacturing Intelligence Division im Bereich der CAD/CADM- und Produktionssoftware angehören, die derzeit von der Marke Vero Software geführt wird.

hexagon.com

Anzeige

Im ersten Quartal 2018 ist der Umsatz mit Komponenten und Systemen für die industrielle Bildverarbeitung in Nordamerika gegenüber dem Vorjahr um 19% auf 709Mio.US$ gestiegen – ein neuer Rekordwert beim Quartalsumsatz.

www.visiononline.org

Anzeige

Die OPC-UA-Arbeitsgruppen Bildverarbeitung und Robotik im VDMA haben auf der Automatica OPC UA Companion Specifications für Robotik und Industrielle Bildverarbeitung veröffentlicht. Die Spezifikation OPC UA Vision bietet ein generisches Modell für alle Bildverarbeitungssysteme – von einfachen Vision-Sensoren bis zu komplexen Systemen.

www.vdma.org

Anzeige

Die beiden österreichischen Forschungsunternehmen Austrian institute of Technology und Profactor haben bekannt gegeben, zukünftig in Hinblick auf die Trendthemen Digitalisierung und Industrie 4.0 ihre Kräfte zu bündeln. Bestehen in Hinblick auf das Lösungsspektrum und die Kundenstruktur bereits Synergien, soll eine langfristige Zusammenarbeit erlauben, dieses Potenzial noch zu erhöhen. Dadurch soll das Forschungsportfolio noch intensiver an den Bedürfnissen der Industrie ausgerichtet werden.

www.ait.ac.at

Anwender können die berührungslose Wärmebildgebungsfunktion des Industrie-Wärmebild-Multimeter DM285 nutzen, um überhitzte Systemkomponenten schnell ausfindig zu machen und anschließend mithilfe seiner DMM-Testfunktionen die Fehlerursache zu erkennen und zu beheben. Mit seinen 18 Funktionen und seiner Wärmebildauflösung von 160×120 Pixeln misst es Temperaturen von bis zu 400°C, speichert die Daten für zehn Sätze von 40.000 Skalarmessungen und 100 Bilder und bietet eine Abruffunktion, die eine Datensichtung am Einsatzort ermöglicht. Es verfügt über eine integrierte Arbeitsleuchte und bietet flexible Akku-/Batterieoptionen.

www.flir.com

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige