Algorithmen-Paket für hochgenaue Stereoskopie-Anwendungen

Algorithmen-Paket für hochgenaue Stereoskopie

Direkte Stereo-Kalibrierung

Eine der wichtigsten Voraussetzungen für ein stereoskopisches Tiefenmesssystem ist eine hochgenaue Kalibrierung der intrinsischen und extrinsischen Parameter des Systems. Zu den intrinsischen Parametern gehören die Verzerrungen des optischen Systems sowie die Einbaulage des Objektivs relativ zum Bildsensor. Die extrinsischen Parameter umfassen die Relativlage der Bildsensoren zueinander sowie zu einem festen Referenzpunkt des Systems. Nur wenn diese Parameter genau bestimmt sind, können die Sensorbilder so rektifiziert werden, dass eine präzise Tiefenkarte in Echtzeit berechnet werden kann.

Intrinsische Kalibrierung mit mehreren Targets (Bild: Myestro Interactive GmbH)

Intrinsische Kalibrierung mit mehreren Targets (Bild: Myestro Interactive GmbH)


Multi-Targetkalibrierung ist das am häufigsten eingesetzte Kalibrierverfahren und verwendet mehrere Aufnahmen bekannter Kalibriertargets (z.B. Schachbretter oder Kreis-Muster), um daraus die intrinsischen Parameter des angenommenen Linsenmodells sowie die extrinsischen Systemparameter zu schätzen. Um eine hohe Kalibrierqualität zu erreichen, müssen dabei viele verschiedene Aufnahmen des Targets unter wechselnden Winkeln gemacht werden, die zusammen den Bildbereich beider Sensoren vollständig abdecken. Für die Fertigung einer Stereo-Kamera bedeutet dies einen sehr hohen Aufwand. Eine Kompromisslösung ist ein Aufbau mit mehreren Kalibriertargets, über dem die Sensoren jeweils einzeln positioniert werden. Damit ist die Bestimmung der intrinsischen Parameter mit geringem Aufwand möglich, die der extrinsischen Parameter jedoch nicht. Für die extrinsische Kalibrierung ist dann ein gesonderter Kalibrieraufbau nötig. Außerdem hat sich in der Praxis herausgestellt, dass viele Objektive Verzerrungsfehler aufweisen, die die klassischen Modelle mit einer radialen und einer tangentialen Verzerrungskomponente nicht hinreichend korrigieren können. Dieser Modell-Restfehler wirkt sich auf die erreichbare Messgenauigkeit aus.

Anzeige

Hochgenaue Ein-Schritt-Kalibrierung

Um die Herausforderung zu meistern, eine Stereo-Kamera in der Produktion einfach und hochgenau zu kalibrieren, wurde bei Myestro die Kombinierte Intrinsische und Extrinsische Vektorgitterkalibrierung (KIEV) entwickelt. Mit dieser Methode kann eine Stereokamera in einem einzigen Kalibrierstand mit wenigen Aufnahmen kalibriert werden. Kernstück des Verfahrens ist die Kalibrierbox mit Kamera-Haltevorrichtung, in der ein Haupt- und ein Hilfsgitter montiert sind. Das Hauptgitter besteht aus einer weißen Fläche mit einem regulären Muster aus schwarzen Kreisen, die parallel zum Kameragehäuse montiert ist und das gesamte Sichtfeld beider Sensoren abdeckt. Das Hilfsgitter besteht ebenfalls aus einer Muster-Fläche, ist jedoch kleiner als das Hauptgitter. Es befindet sich näher an der Kamera und kann in das Kamera-Sichtfeld hinein- oder herausgeschwenkt werden. Für die Kalibrierung reicht nun je eine Aufnahme des Haupt- und des Hilfsgitters. Mithilfe des entwickelten Subpixel Field Influence (SFI) Algorithmus können die Mittelpunkte der Kreise bis auf wenige Hundertstel Pixel genau vermessen werden. Durch diese Messgenauigkeit wird es möglich, auf ein klassisches Linsenmodell zu verzichten. Stattdessen wird ein Gitter von Verschiebungsvektoren berechnet, durch das für jeden Sensorpixel die Verschiebung zwischen nominellem und gemessenem Bildpunkt bestimmt werden kann. Dieses Korrekturgitter besitzt typischerweise eine Stützstelle in jeder zehnten Pixelzeile und -spalte. Zwischen den Stützstellen sind die Kalibrierfehler hinreichend linear, sodass der Korrekturwert für jeden Pixel bilinear aus den umliegenden Stützstellen interpoliert werden kann. Außerdem ist es möglich, das auf den physikalischen Sensor bezogene Korrekturgitter so zu transformieren, dass das rektifizierte Bild als Bezugs-Koordinatensystem gilt. Diese inverse Rektifizierung, bei der für jeden Zielpixel direkt die Quell-Subpixelposition berechnet werden kann, eignet sich besonders für eine effiziente Implementierung auf den Parallelrechnerstrukturen heutiger GPUs. Eine mit KIEV kalibrierte Kamera ist im Auslieferungszustand in der Lage, hochgenaue Tiefenkarten zu berechnen. Durch äußere Einflüsse (Temperaturschwankungen, Stöße, Vibrationen etc.) verstellt sich das System jedoch mit der Zeit, sodass die ursprüngliche Kalibrierung nicht mehr gültig ist. Die intrinsischen Parameter sind dabei allerdings stabil, solange keine großen Kräfte auf das optische System einwirken. Die extrinsischen Parameter verändern sich dagegen teilweise so stark, dass die Messgenauigkeit abnimmt. Um diese Veränderung zur Laufzeit zu messen und auszugleichen kommt die RubberStereo-Technologie zum Einsatz. Ausgehend von den KIEV-kalibrierten Bildern wird aus der beobachteten Szene targetfrei die Abweichung der extrinsischen Parameter bestimmt und als Bildebenen-Korrektur ins System zurückgekoppelt.

Fazit

Mithilfe der drei Technologien SFI, KIEV und RubberStereo ist es gelungen, ein algorithmisches Komplettpaket für hochgenaue Stereoskopie-Anwendungen zu entwickeln, das sowohl eine aufwandsarme Produktion als auch eine gleichbleibende Messqualität ohne Nachkalibrierung im Feld sicherstellt.

Direkte Stereo-Kalibrierung
Bild: Myestro Interactive GmbH


Das könnte Sie auch interessieren

Wie können komplette 3D-Daten erfasst, interne Defekte in Gussteilen erkannt und sogar deren 3D-Koordinaten bestimmt werden? Das Unternehmen Carl Zeiss Industrielle Messtechnik GmbH hat ein informatives Video veröffentlicht, in dem die Inline-Prozessinspektion mit dem Zeiss VoluMax in der Leichtmetallgießerei am BMW-Produktionsstandort Landshut veranschaulicht wird.

Anzeige

Klassische Wärmebildkameras benötigen einen mechanischen Shutter, mithilfe dessen ca. alle 2 bis 3 Minuten Referenzdaten zur Kalibrierung der Wärmebilddarstellung und der Temperaturmessung aufgenommen werden. Jedoch erzeugt das Schließen des Shutters ein Geräusch und die Videoaufzeichnung ist während dieser Zeit unterbrochen. Daher hat Tamron nun ein Shutter-loses Wärmebildkameramodul auf Basis eines amorphen Silikonwärmebildsensors entwickelt. Dieser Sensor verfügt über eine exzellente Temperaturwiedergabe selbst wenn sich seine eigene Temperatur verändert.

www.tamron.eu

Der Industriescanner VTCIS ist in der Lage, im Druckbild fehlende Nozzles bei einer Auflösung von 1.200dpi automatisch zu detektieren. Da der CIS (Compact Image Sensor) nicht das komplette Bild einzieht, sondern nur bestimmte Bereiche scannt, wird die Datenverarbeitung vereinfacht und die Datenmenge deutlich reduziert. Außerdem garantiert die integrierte Flüssigkeitskühlung Farbstabilität über den gesamten Druckprozess hinweg und schließt Farbabweichungen aus. Dank einer Zeilenrate von bis zu 250kHz und einer Abtastgeschwindigkeit von bis zu 20m/s ist der Scanner für sehr schnell laufende Druckprozesse bestens geeignet.

www.tichawa.de

Die neuesten Versionen der 3D-Kameras für Lasertriangulation erreicht Triangulationsraten von bis zu 68kHz. Die Kamera basiert dabei auf einem 2/3″ Hochgeschwindigkeitssensor von Cmosis, der auch bei schwachen Lichtverhältnissen eine hervorragende Leistung erbringt. Als Schnittstelle verwendet die 3D05 das standardisierte GigEVision-Interface. Für eine einfache Integration und Synchronisierung besitzt die Kamera eine komplette, in die Kamera integrierte Drehgeberschnittstelle (RS422 und HTL). Das HTL-Interface ermöglicht dabei auch einen stabilen und effizienten Einsatz in der Schwerindustrie oder Bereichen mit starken elektrischen Störquellen.

www.photonfocus.com

Sensoren bis zu 1/1.2 und 1″ wurde die HF-XA-5M Objektivserie von Fujinon entwickelt. Die Objektive erreichen eine konstant hohe Auflösung von 5MP über das gesamte Bildfeld – bei einem Pixelabstand von 3,45µm. Dies gilt bei offener Blende ebenso wie bei verschiedenen Arbeitsabständen. Mit 29,5mm Außendurchmesser eignen sich die Objektive für platzkritische Anwendungen.

www.polytec.de

Die Messsoftware Wave ist für den hochpräzisen Wegmesssensor IDS3010. Damit können Messdaten in Echtzeit analysiert, verarbeitet und ausgewertet werden. Die Software verfügt über verschiedene Funktionen zur Visualisierung und Analyse von Daten, beispielsweise können die angezeigten Messdaten vergrößert/verkleinert werden oder die Datenvisualisierung kann gestoppt werden, um bestimmte Zeitbereiche zu analysieren. Außerdem ist eine Live Fast-Fourier-Transformation von Messwerten implementiert.

www.attocube.com

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige