Anzeige

Gegen den Trend?

Zeilenkameras mit großen Pixeln

Pixelgrößen von sieben, zehn und 14 Mikron sind bereits Bestandteil des JAI-Zeilenkamera-Produktprogramms. Warum dann gegen den Trend hin zu kleineren Pixeln gehen und eine Kamera mit 20µ-Pixelgröße vorstellen?
Große Pixel weisen in der Praxis bedeutende Vorteile auf, wenn es um Empfindlichkeit, Dynamikbereich und Geschwindigkeit geht. Des Weiteren scheinen die drei Faktoren in gegenseitiger Beziehung zu stehen, werden aber zur Vereinfachung zunächst einzeln betrachtet.

Empfindlichkeit als Funktion der Pixelgröße

Anwendungen für Zeilenkameras, nicht zuletzt mit hoher Geschwindigkeit, haben oft mit dem Lichtbudget Schwierigkeiten. In diesem Abschnitt liegt der Schwerpunkt auf der Beziehung zwischen Pixelgröße und Empfindlichkeit. Bei der Kamera geht es bei der Empfindlichkeit für verschiedene Pixelgrößen um die Zahl der Photonen, die das optoelektrische System, das heißt die Optik und den Sensor erfassen und in Elektronen umwandeln kann. Für die Einrichtung einer typischen Zeilenkameraanwendung muss ein kleiner Bereich der Objektfläche auf einen Pixel abgebildet werden. Unter der Voraussetzung einer gegebenen Distanz der Kamera zum Objekt und eines verlustlosen und optisch korrigierten Objektives, wird die auf das tatsächliche Pixel abgebildete Lichtmenge allein durch die Blende begrenzt. Wie aber wird die Empfindlichkeit der Kamera beeinflusst, wenn man von einem Sensor mit 10µ-Pixelgröße zu einem Sensor mit 20µ-Pixelgröße wechselt (Bild 2)? Bei Verwendung der Objektivvergrößerungsformel [M=(di/do)=(hi/ho)=f/(do-f)=(di-f)/f] und der Objektivformel für die F-Zahl [F#=f/dlens], wobei…

di: Distanz zwischen Objektiv und Bild,

do=1m: Distanz zwischen Objektiv und Objekt,

hi=0,01mm und 0,02mm: Bildhöhe (Pixelgröße),

ho=0,5mm: Objekthöhe, f: Brennweite und dlens: Blende sind,

…stellt sich heraus, dass die 10µ-Pixel eine Brennweite des Objektivs von rund 20mm und die 20µ-Pixel eine Brennweite von rund 40mm benötigen, um dasselbe Objekt von 0,5mm Größe auf einen Pixel abzubilden. Damit die beiden Pixelgrößen von 10µ und 20µ dieselbe Lichtmenge erfassen, müssen die beiden Objektive mit derselben Blende betrieben werden, was zu F#(20µ)/F#(10µ)=40mm/20mm=2 führt; das heißt, dass die 20µ-Pixel viermal weniger Licht benötigen als die 10µ-Pixel.

Dynamikbereich und Pixelgröße

Bei Zeilenkameraanwendungen (bei denen kleinere Defekte, Druckmuster oder leichte Farbveränderungen erkannt werden müssen) oder für die Filmdigitalisierung ist ein hoher Dynamikbereich ein Muss. Der Dynamikbereich wird als Pixel-Full-Well-Kapazität über das RMS-Rauschen der dunklen Bildbereiche definiert [DRimager=(full well capacity)/(rms noisedark)] und wird in der Regel in dB angegeben [DRimager=20*log(full well capacity/rms noisedark)]. Für eine fest vorgegebene Stärke des Substrates des Sensors nimmt die Well-Kapazität mit dem Quadrat der Pixelgröße zu und führt bei einer größeren Pixelgröße zu einer höheren Well-Kapazität und damit zu einem größeren Dynamikbereich, sofern ausreichend Licht zur Verfügung steht. Die höhere Well-Kapazität und damit der größere Dynamikbereich resultiert in einer besseren Photonen-Statistik, welche zumindest in den dunkleren Bildfeldern zu einer höheren Erkennungsgenauigkeit führt, sei es nun bei der Farbe oder den Grauwerten.

Anzeige

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Die fünf nominierten Firmen für den Vision Tank Start Up Competition der Embedded Vision Alliance sind bekannt gegeben worden. Es sind AiFi, Aquifi, Boulder AI, Sturfee und Virtusense. Der mit 5.000 USD notierte Preis wird im Rahmen des Embedded Vision Summit am 23. Mai in Santa Clara (USA) verliehen.

www.embedded-vision.com

Anzeige

Dem Startup RoVi Robot Vision von drei Forschern der TU München ist es gelungen, intelligente Roboter auch für KMUs und Endverbraucher verfügbar zu machen. RoVi bietet eine softwarebasierte Sensorlösung, die herkömmliche elektronische Sensoren durch Software und gängige Kameras ablöst.

www.rovi-robotics.de

Mit der kleinen Lochblende und durch die Verwendung eines Photomultipliers als Laser-Empfangselement mit 16Bit-Erfassung, kann das konfokale 3D-Laserscanning-Mikroskop VK-X-Bilderfassungen und Messungen auf nahezu jeder Art von Material durchführen, da das Streulicht reduziert wird. Analysen können über eine 50mm-Messfläche mit einer Auflösung im nm-Bereich und einer Vergrößerung von 42x bis 28.800x durchgeführt werden. Dadurch ist die Aufnahme stets vollfokussierter Farbbilder und Messungen mit Fokusvariation nach ISO25178-6 möglich. Die AI-Scan-Funktion und AI-Analyser-Funktion vereinfachen die Messungen, da diese mit nur einem Klick Analysen starten kann.

www.keyence.de

Anzeige

Kollaboratives Arbeiten zwischen Menschen und Robotern ist einer der aktuellen Trends, die auf der diesjährigen Hannover Messe unter dem Motto „Integrated Industry – Connect and Collaborate“ thematisiert wird. ifm leistet mit seiner neuen 3D-Kamera O3X einen entscheidenden Beitrag dazu, dass dieser Trend auch in der Praxis umgesetzt werden kann.‣ weiterlesen

www.ifm.com

Anzeige

Als Teil der Computer Vision System Toolbox von Matlab ermöglicht die Image Labeler App die schnellere Kennzeichnung von Ground Truth Data in großen Bilddatensätzen für Deep Learning und semantische Segmentierung. Die App beinhaltet Automatisierungsalgorithmen, wie Flood Fill und Smart Polygon, zur schnelleren Kennzeichnung von Pixeln für die semantische Segmentierung.

www.mathworks.com

Anzeige

Nach 35 Jahren an der Spitze der Laser Components Group zieht sich Firmengründer Günther Paul (72) in den Ruhestand zurück. Bereits 2014 hatte er die Anteile des Unternehmens an seine Söhne Patrick und Felix überschrieben. Mit einer Überraschungsfeier in der Olchinger Firmenzentrale verabschiedete sich am 18. April die gesamte Belegschaft von ihrem langjährigen Chef und ließ noch einmal die wichtigsten Meilensteine der Firmengeschichte Revue passieren.

www.lasercomponents.de

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige