Geprüfte Oberflächen

Sub-µm Inline-3D-Oberflächenprüfung im Sekundentakt

Metallische Produkte, die durch Tiefziehen oder andere Kaltumformungsprozesse entstehen, müssen sehr exakte
3D-Oberflächeneigenschaften aufweisen – z.B. auf Dichtflächen oder an Graten. Mit der digitalen Mehrwellenlängen-Holographie lassen sich Oberflächen direkt in der Fertigungslinie 3D vermessen – sub-µm-genau und extrem schnell. Spiegelnde und raue Metalloberflächen können dabei genauso geprüft werden wie auch viele Verbundwerkstoffe.
Bei der digitalen Mehrwellenlängen-Holographie wird der zu vermessende Prüfling mit Laserlicht bestrahlt. Dieser streut das Licht teilweise zurück zum Sensor. Dort wird es mit unbeeinflusstem Laserlicht zu einem Interferenzbild überlagert, was die Information über die Form des Objekts in sich trägt. Durch numerische Berechnungen lassen sich die 3D-Daten errechnen und visualisieren. Wiederholt man die Messung mit mehreren leicht unterschiedlichen Laserwellenlängen, können Messgenauigkeit und Messbereich gesteigert werden. Durch die Wahl der Laserwellenlängen und des optischen Aufbaus lässt sich das Verfahren an verschiedene Einsatzbereiche individuell anpassen. Die Entwicklung bezahlbarer Lasersysteme, die schnell zwischen verschiedenen, sehr dicht beieinanderliegenden Wellenlängen umschalten bzw. durchstimmen können, macht das Verfahren für die industrielle Messtechnik interessant. Seit kurzem wird das HoloTop-System direkt in der Produktionslinie eingesetzt.

Digitale Mehrwellenlängen- Holographie

Mit aktuellen Messsystemen, die auf der digitalen Mehrwellenlängen-Holographie basieren, lassen sich mehr als 100 Millionen 3D-Punkte pro Sekunde messen. Das grenzt das Verfahren hinsichtlich Mess- und Auswertegeschwindigkeit deutlich gegen eine Vielzahl anderer optischer 3D-Messverfahren ab. Ein im Sensorkopf integriertes kalibriertes Normal erlaubt es, die Messung permanent auf das Normal zurückzuführen und quasi in Echtzeit zu kalibrieren. Alternativ besteht die Möglichkeit, die Einzelwellenlängen mit einem hochauflösenden Spektrometer oder Wavemeter zu messen und damit das Messsystem zu kalibrieren. Im Gegensatz zu allen anderen bildgebenden 3D-Messverfahren kommt die digitale Holographie ohne ein abbildendes System aus. Das hat den Vorteil, dass keine Abbildungsfehler wie z.B. Verzeichnungen in die Messung eingebracht werden. Die laterale Auflösung wird auch bei der linsenlosen Anordnung durch die numerische Apertur und damit maßgeblich durch die Größe (nicht die Pixelzahl) des zur Aufzeichnung verwendeten Kamerachips und den Abstand zum Objekt, begrenzt. Da Kamerachips aus technischen und wirtschaftlichen Gründen nicht beliebig groß hergestellt und Prüflinge in der Praxis nicht beliebig dicht am Chip positioniert werden können, ist die laterale Auflösung der linsenlosen Anordnung in der Praxis auf einige Mikrometer begrenzt. Diese Grenze kann durch eine zusätzliche Optik, die die Objektwelle vor der holographischen Aufzeichnung vergrößert, bis in den mikroskopischen Bereich verschoben werden. Im sichtbaren Spektralbereich liegt die laterale Auflösungsgrenze dann beugungsbegrenzt bei ca. 0,5µm.

Anzeige

Nachträgliches Scharfstellen

Metallische Produkte, wie sie etwa beim Tiefziehen, (Präzisions-)Drehen oder anderen Kaltumformungsprozessen entstehen, lassen sich mit digitaler Mehrwellenlängen-Holographie sehr gut vermessen. Beispielhaft seien hier die Oberflächen von Dichtflächen genannt. Das Messfeld besteht aus 3.072×3.072 Messpunkten. Die Zeit für die Datenaufnahme für die gesamte Messung beträgt 60ms. Die anschließende Rechnung, die aus den Rohdaten echte 3D-Daten erzeugt, dauert abhängig vom eindeutigen Messbereich zwischen 90 und 150ms. Erreicht wird die schnelle Datenauswertung durch hochgradig parallele Datenverarbeitung auf modernen Grafikkarten. Auch feinste Details der Dichtoberfläche werden so exakt aufgelöst. Die erreichbare laterale Auflösung ist dabei nur durch die Abbildungsqualität des verwendeten Objektivs begrenzt. Ein weiteres typisches Einsatzgebiet der digitalen Mehrwellen-Holographie ist die Inspektion von Aludruckgussteilen in Bezug auf Mikrodefekte und Grate. Selbst einzelne Mikrodefekte, die in der Regel nur wenige Mikrometer betragen, können wichtige Eigenschaften wie z.B. den thermischen Kontakt eines Aludruckgussgehäuses so verschlechtern, dass die Qualität des Bauteils nicht akzeptabel ist. Eine Inline-Überprüfung der Aludruckgussteile garantiert hier die gewünschten Bauteileigenschaften. Eine Besonderheit der digitalen Mehrwellenlängen-Holographie ist die Möglichkeit des ’nachträglichen Scharfstellens‘. Nach der Auswertung der Messdaten liegt im Rechner ein vollständiges Modell der Lichtwellen vor, die vom Objekt auf den Sensor gelangt sind. Wurden das Objekt oder Teile davon unscharf abgebildet, so besteht die Möglichkeit, die Daten mithilfe numerischer Methoden so weiterzuverarbeiten, dass nachträglich ein scharfes Bild des Objekts berechnet werden kann. Dazu sind weder mechanische Bewegung noch eine zusätzliche Datenerfassung erforderlich.

Das könnte Sie auch interessieren

Klassische Wärmebildkameras benötigen einen mechanischen Shutter, mithilfe dessen ca. alle 2 bis 3 Minuten Referenzdaten zur Kalibrierung der Wärmebilddarstellung und der Temperaturmessung aufgenommen werden. Jedoch erzeugt das Schließen des Shutters ein Geräusch und die Videoaufzeichnung ist während dieser Zeit unterbrochen. Daher hat Tamron nun ein Shutter-loses Wärmebildkameramodul auf Basis eines amorphen Silikonwärmebildsensors entwickelt. Dieser Sensor verfügt über eine exzellente Temperaturwiedergabe selbst wenn sich seine eigene Temperatur verändert.

www.tamron.eu

Anzeige

Der Industriescanner VTCIS ist in der Lage, im Druckbild fehlende Nozzles bei einer Auflösung von 1.200dpi automatisch zu detektieren. Da der CIS (Compact Image Sensor) nicht das komplette Bild einzieht, sondern nur bestimmte Bereiche scannt, wird die Datenverarbeitung vereinfacht und die Datenmenge deutlich reduziert. Außerdem garantiert die integrierte Flüssigkeitskühlung Farbstabilität über den gesamten Druckprozess hinweg und schließt Farbabweichungen aus. Dank einer Zeilenrate von bis zu 250kHz und einer Abtastgeschwindigkeit von bis zu 20m/s ist der Scanner für sehr schnell laufende Druckprozesse bestens geeignet.

www.tichawa.de

Die neuesten Versionen der 3D-Kameras für Lasertriangulation erreicht Triangulationsraten von bis zu 68kHz. Die Kamera basiert dabei auf einem 2/3″ Hochgeschwindigkeitssensor von Cmosis, der auch bei schwachen Lichtverhältnissen eine hervorragende Leistung erbringt. Als Schnittstelle verwendet die 3D05 das standardisierte GigEVision-Interface. Für eine einfache Integration und Synchronisierung besitzt die Kamera eine komplette, in die Kamera integrierte Drehgeberschnittstelle (RS422 und HTL). Das HTL-Interface ermöglicht dabei auch einen stabilen und effizienten Einsatz in der Schwerindustrie oder Bereichen mit starken elektrischen Störquellen.

www.photonfocus.com

Sensoren bis zu 1/1.2 und 1″ wurde die HF-XA-5M Objektivserie von Fujinon entwickelt. Die Objektive erreichen eine konstant hohe Auflösung von 5MP über das gesamte Bildfeld – bei einem Pixelabstand von 3,45µm. Dies gilt bei offener Blende ebenso wie bei verschiedenen Arbeitsabständen. Mit 29,5mm Außendurchmesser eignen sich die Objektive für platzkritische Anwendungen.

www.polytec.de

Die Messsoftware Wave ist für den hochpräzisen Wegmesssensor IDS3010. Damit können Messdaten in Echtzeit analysiert, verarbeitet und ausgewertet werden. Die Software verfügt über verschiedene Funktionen zur Visualisierung und Analyse von Daten, beispielsweise können die angezeigten Messdaten vergrößert/verkleinert werden oder die Datenvisualisierung kann gestoppt werden, um bestimmte Zeitbereiche zu analysieren. Außerdem ist eine Live Fast-Fourier-Transformation von Messwerten implementiert.

www.attocube.com

Das Portfolio der von Jan Biedenkap (Bild) neu gegründeten BI.VIS aus Straubenhardt umfasst Beleuchtungen, telezentrische- und entozentrische Objektive sowie Kameras. Dafür arbeitet die Firma mit namhaften Partnern wie MBJ Imaging, Vico Imaging, CBC Computar, Allied Vision, Lucid Vision Labs und Cretec zusammen.

bi-vis.business.site

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige