Going Deep

Jeff Bier’s Column: Why Depth Sensing Will Proliferate

If you’ve read recent editions of this column, you know that I believe that embedded vision – enabling devices to understand the world visually – will be a game-changer for many industries. For humans, vision enables many diverse capabilities: reading your spouse’s facial expression, navigating your car through a parking garage, or threading a needle. Similarly, embedded vision is now enabling all sorts of devices to be more autonomous, easier to use, safer, more efficient and more capable.

Bild: Embedded Vision Alliance

„Depth is a key aspect of visual perception, but one that’s been out of reach for most product designers.“ -Jeff Bier, Embedded Vision Alliance (Bild: Embedded Vision Alliance)

Anzeige

When we think about embedded vision (or, more generically, computer vision), we typically think about algorithms for identifying objects: a car, a curb, a pedestrian, etc. And, to be sure, identifying objects is an important part of visual intelligence. But it’s only one part. Particularly for devices that interact with the physical world, it’s important to know not only what objects are in the vicinity, but also where they are. Knowing where things are enables a camera to focus on faces when taking a photo, a vacuum cleaning robot to avoid getting wedged under the sofa, and a factory robot to safely collaborate with humans. Similarly, it’s often useful to know the size and shape of objects – for example, to enable a robot to grasp them. We live in a 3D world, and the location, size and shape of an object is a 3D concept. It’s sometimes possible to infer the depth dimension from a 2D image (for example, if the size of the object is already known), but in general, it’s much easier to measure the depth directly using a depth sensor. Historically, depth sensors have been bulky and expensive, like the LiDAR sensors seen on top of Google’s self-driving car prototypes. But this is changing fast. The first version of the Microsoft Kinect, introduced in 2010, showed that it was possible – and useful – to incorporate depth sensing into a consumer product. Since then, many companies have made enormous investments to create depth sensors that are more accurate, smaller, less expensive and less power hungry. Other companies (such as Google with Project Tango and Intel with RealSense) have invested in algorithms and software to turn raw depth sensor data into data that applications can use. And application developers are finding lots of ways to use this data. One of my favorite examples is 8tree, a start-up that designs easy-to-use handheld devices for measuring surface deformities such as hail-damage on car bodies. And augmented reality games in which computer-generated characters interact with the physical world can be compelling. There are many types of depth sensors, including stereo cameras, time of flight and structured light. Some of these, like stereo cameras, naturally produce a conventional RGB image in addition to depth data. With other depth sensor types, a depth sensor is often paired with a conventional image sensor so that both depth and RGB data are available. This naturally raises the question of how to make best use of both the RGB and the depth data. Perhaps not surprisingly, recently researchers have successfully applied artificial neural networks to this problem. The more our devices know about the world around them, the more effective they can be. Depth is a key aspect of visual perception, but one that’s been out of reach for most product designers. Now, thanks to improvements in depth sensors, algorithms, software and processors, it’s becoming increasingly practical to build incorporate sensing into even cost- and power constrained devices like mobile phones. Look, for example, at Apple´s just-announced iPhone 7 Plus, along with other recently-introduced dual-camera smartphones such as Huawei’s P9, Lenovo’s Phab2 Pro, LG’s G5 and V20, and Xiaomi’s RedMi Pro.

Going Deep
Bild: Embedded Vision Alliance


Das könnte Sie auch interessieren

Zum 1. November hat die FiberOptic AG aus Spreitenbach, Schweiz, die gesamte Produktion der Volpi-Standardprodukte für den Bereich Bildverarbeitung übernommen. Davon betroffen sind neben Lichtquellen- und Glasfaserkomponenten auch Lösungen im Bereich der LED-Beleuchtung.

www.stemmer-imaging.de

Anzeige

Vergangene Woche fand das erste Zeiss CT User Meeting in Deutschland stand. Mehr als 65 Teilnehmer kamen zusammen, um über Computer Tomography im industriellen Umfeld zu diskutieren.

www.zeiss.de

Das 17. Polyworks Anwendertreffen wird aufgrund von zeitlichem Bauverzug des ursprünglichen Veranstaltungsortes nächstes Jahr vom 20. bis 22. März im Graf-Zeppelin-Haus in Friedrichshafen am Bodensee statt finden. Es werden über 300 Polyworks Anwender, Entwickler, Dienstleistungsanbieter und Gerätehersteller bei den verschiedenen Workshops, Schulungen und Lösungsdemonstrationen erwartet.

www.duwe-

Anzeige

Astronomen in Kalifornien bauen derzeit die größte Digitalkamera der Welt. Diese soll auf einem riesigen Teleskop unter dem Namen ‚Large Synoptic Survey Telescope‘ (LSST) in Chile montiert werden.

www.npr.org

Anzeige

Der Spezialist für Datenerfassung und Prozessautomatisierung Datalogic hat bekannt gegeben, 20% der Firmenanteile des italienischen Unternehmens R4i S.r.l. akquiriert zu haben.

www.datalogic.com

MKS Ophir hat Nicolas Meunier zum neuen Business Development Manager berufen. In dieser Rolle soll er das Engagement des Unternehmens in der industriellen Messtechnik sowohl für Hochleistungslaser als auch für Lasersysteme in der Additiven Fertigung weltweit voran treiben. Meunier verfügt über mehr als 14 Jahre Erfahrung im Vertrieb und Produktmanagement.

www.mksinst.com

Anzeige