Human like Machine Vision

Deep Learning Vision Software für neue BV-Aufgaben

Klassische Vision-Systeme stoßen bisher immer wieder an ihre Grenzen bei Aufgabenstellungen, welche für den Menschen einfach lösbar sind. Dies bedeutet, dass nach wie vor noch für viele Aufgabenstellungen – trotz aller Einschränkungen und Risiken – die manuelle Beurteilung durch den Menschen die beste Lösungsalternative ist. Die Antwort für diese Aufgabenstellungen ist die ViDi Suite.
Die Beurteilung von Oberflächen mit Texturen gehört zu den Aufgabenstellungen, bei denen klassische Vision-Systeme an ihre Grenzen stoßen. Das menschliche Auge kann Texturen, Muster, Objekte und Strukturen erkennen und bereits nach kurzer Anlernzeit zuverlässig visuell beurteilen und klassifizieren. Anhand von wenigen Beispielen lernt der Mensch zulässige Variationen von Fehlern zu unterscheiden – selbst bei Naturprodukten bei denen keine zwei Teile exakt gleich sind. Beim Einsatz von human-like Machine Vision wird anhand von Gut-Muster-Bildern ein sogenanntes Erwartungsbild (zulässiges Erscheinungsbild, inklusive tolerierter und zulässiger Toleranzen) trainiert. Die bildgebende Quelle ist dabei unerheblich. Bilder der Prüflinge werden in der Serienprüfung gegen das Erwartungsbild bewertet. Somit sind keine aufwändigen Merkmals- oder Fehlerbibliotheken notwendig, da neue Fehler nicht notwendigerweise trainiert werden. Neue Produkte sind ohne großen Aufwand erlernbar. Mit steigender Repräsentativität der Stichprobe an Bildern steigt die Performance des Systems, was die Erkennungsleistung und Robustheit gegenüber zulässigen Streuungen erhöht. ViDi Suite ist die erste Deep Learning Vison Software, die speziell auf die industrielle Analyse von Bildern hin entwickelt und optimiert wurde. Sie basiert auf speziellen Algorithmen für maschinelles Lernen und übertrifft die besten Prüfer(-innen). Es ist keine Softwareentwicklung notwendig, und es können zudem Aufgaben gelöst werden, die nicht zu programmieren sind.

Anwendungsmöglichkeiten

Das sogenannte human-like Machine Vision ist völlig neu entwickelt und auf unterschiedliche Aufgabenstellungen hin optimiert. Es liefert automatisiert prozesssicher Ergebnisse mit hohen Erkennungsleistungen, selbst bei schwierigen oder texturierten Hintergründen, Oberflächen mit Strukturen, Mustern oder Beschichtungen sowie unterschiedlichen Materialien. Beispiele hierfür sind Textilien, Leder, Holz, Gummi, Metall (bearbeitet, beschichtet, veredelt), glühender Stahl, Karbon, Steinoberflächen, Fliesen, Papier, Tapeten, Kunststoff, verzierte, dekorierte, reflektierende Oberflächen sowie Dekor-/Klebefolien. Die Software wird genutzt um qualitative Auffälligkeiten und ästhetische Fehler aller Art zu entdecken, etwa wie Kratzer, Dellen, Schlagstellen, Schattierungen, Beschichtungsfehler, Webfehler in Textilien, fehlerhafte Schweißnähte oder Kleberaupen. Auch unbekannte Fehler werden zuverlässig als Auffälligkeit oder Anomalie erkannt, ohne dass sie im Vorfeld explizit trainiert wurden. Weitere Anwendungsmöglichkeiten sind die Lokalisierung und Identifizierung von Merkmalen und Zeichen. Die Software wird eingesetzt um einzelne oder mehrere Merkmale in einem Bild zu finden, diese zu identifizieren und die Lage im Bild zu ermitteln. Anwendungsmöglichkeiten sind z.B. stark deformierten Zeichen auf stark verrauschtem oder texturiertem Hintergrund (OCV, OCR) sowie komplexe Objekte in Schüttgut. Weiterhin können Merkmale auf einem Bild gezählt werden (z.B. Zeichen, Schweißpunkte auf Untergrund mit schwachem Kontrast, Sensoren, Löcher). Außerdem kann eine Klassifizierung von Objekten oder Szenen durchgeführt werden. Dies kann auch in Schüttgut z.B. die Identifikation von Objekten aufgrund ihres Aussehens oder der Verpackung sein. Die Unterscheidung von Produktvarianten, die Klassifizierung von Schweißnähten, Naturprodukten oder Fehlerarten sind Einsatzmöglichkeiten von human-like Machine Vision.

Vorteile für den Anwender

Dabei ergeben sich Vorteile für alle Anwender von Bildverarbeitung: Integratoren können Machbarkeitsuntersuchungen in Stunden anstatt in Tagen durchführen, Maschinenbauer und Integratoren profitieren von Wettbewerbs- und Kostenvorteilen aufgrund des erweiterten Portfolios an Bildverarbeitungslösungen, sowie der deutlich reduzierten Entwicklungszeit und beschleunigten Time-to-Market. Endanwender profitieren von einem kosteneffizienten und prozesssicheren sowie zuverlässigen System, das ohne aufwändige Merkmals- oder Fehlerbibliotheken den Menschen übertrifft.

Das könnte Sie auch interessieren

Oberflächen- und Konturmessung in einem Gerät

Das integrierte Messsystem Duo Vario bietet zwei Messverfahren: das Konfokale und die Fokusvariation, für eine Oberflächenanalyse von Rauheit sowie Konturmessungen. Mit dem konfokalen Verfahren können stark reflektierende Oberflächen rückführbar auf herstellerunabhängige Raunormale gemessen werden. Mit dem neuen Gerät ist dies nun auch mit einem größeren Bildfeld und mit einer höheren lateralen Auflösung möglich. Das Fokusvariationsverfahren ist vor allem für die Messung von Formen und Konturen vorteilhaft. Dabei beträgt der Akzeptanzwinkel über 85°.

www.confovis.com

3D-Fotogrammetrie-Kamera mit visueller Projektion

Die Maxshot 3D-Fotogrammetrie-Kamera verbindet eine einfache Bedienung und Genauigkeit mit umfangreichen Größenmessprojekten. Sie kann als einzelnes Messgerät aber auch in Kombination mit Creaforms 3D-Scannern und tragbaren KMMs verwendet werden. Das Gerät ist 40% präziser als der Vorgänger und hat eine volumetrische Genauigkeit von bis zu 0,015mm/m. Eine visuelle Projektion mit Echtzeit-Feedback direkt auf dem Teil, leitet den Nutzer zu der richtigen Position für die Aufnahme.

www.creaform

Reflektivität in voller Bandbreite

Das Interferometer µPhase basiert auf dem Twyman-Green-Prinzip und vermisst hochpräzise Abweichungen in Planität und Sphärizität, mit einer Genauigkeit bis zu 0.01µm. Die berührungsfreie Messung und Auswertung erfolgt dabei großflächig innerhalb von Sekunden.

www.trioptics.com

Anzeige
66. Heidelberger Bildverarbeitungsforum

Das 66. Heidelberger Bildverarbeitungsforum wird am 10. Oktober in Freiburg an der Technischen Fakultät der Albert-Ludwigs-Universität stattfinden. Das diesjährige Schwerpunktthema lautet ‚Mensch-Maschine-Interaktion mit Vision‘ und gibt anhand von verschiedenen Vorträgen einen systematischen Einblick in die Anwendungsfelder, in der Vision-Technologien zur Interaktion mit dem Menschen eingesetzt werden können. Am Ende der Veranstaltung wird es eine große Abschlussdiskussion zur Fazit-Findung geben.

www.bv-forum.de

Anzeige
Yxlon: Neuer Global Director of Electronics Sales

Yxlon International, spezialisiert auf Durchleuchtungs- und CT-Inspektionssysteme, hat Keith Bryant zum neuen Global Director Electronics Sales ernannt. Bryant bringt über 25 Jahre an Erfahrungen im Bereich Technical Sales mit sich, besonders aus dem Bereich X-Ray. Er wird fortan für alle globalen Marktkanäle zuständig sein und dem globalen Salesteam des Unternehmens vorstehen.

www.yxlon.com

Anzeige
Megatrend Embedded Vision

Mit der ersten Embedded Vision Europe (EVE) Konferenz wird Stuttgart vom 12. bis 13. Oktober zur Embedded Vision Hauptstadt Europas. Hauptredner und Aussteller für die Premierenveranstaltung im ICS Stuttgart stehen bereits fest.

www.embedded-Vision-emva.org

Anzeige