Anzeige

Implantat-Zusammenarbeit

Roboterbasierte Messmodule für miniaturisierte Bauteile

Firmen müssen in der Medizintechnik nationale Vorschriften und Normen – teilweise sogar FDA-Anforderungen an die Produktsicherheit – einhalten, um weltweit verkaufen zu dürfen. Nicht selten erfolgt selbst bei – auf den ersten Blick – einfachen Bauteilen, wie Implantaten oder Schrauben, die Überprüfung von bis zu 15 Eigenschaften, die zusätzlich dokumentiert werden müssen. Ferner sind auch mechanische Gewindeprüfungen oder Drehmoment-Tests neben den üblichen geometrischen Bauteilmessungen vorgeschrieben.

 Um Implantate und komplexe Schrauben in der Medizintechnik normengerecht vermessen zu k?nnen, sind spezielle 100-Prozent-Messl?sungen notwendig. (Bild: Opto GmbH)

Um Implantate und komplexe Schrauben in der Medizintechnik normengerecht vermessen zu können, sind spezielle 100-Prozent-Messlösungen notwendig. (Bild: Opto GmbH)

‚Do it 100% or don’t do it‘ ist das Motto, um das sich in der Medizintechnik alles dreht. Ähnlich der Luftfahrtindustrie, bei dem Menschenleben und Gesundheit auf dem Spiel stehen, zählt hier nur eine ganzheitliche und nachverfolgbare Kontrolle der verwendeten Komponenten. Trotz aller technischen Möglichkeiten ist der Mensch mit all seinen Sinnen immer noch jeder Maschine überlegen, wenn es um eine Vollständigkeitsprüfung von komplexen Bauteilen geht, bei denen Fehler auftauchen, die in der Vergangenheit noch nicht aufgetreten sind. Für die Automatisierung ist dies eine große Herausforderung.

Bauteile bis 2mm Durchmesser

Um im Takt der Produktionsmaschinen eine 100-Prozent-Kontrolle durchführen zu können, sind daher viele Disziplinen gefragt. Die Zuführung und Verteilung zu und von einem Messmodul direkt aus der Maschine oder entsprechenden Behältern ist für die Robotik bei Bauteilgrößen bis 2mm und Längen von gerade einmal 5mm eine Präzisionsaufgabe. Hier sind hochpräzise Roboterarme unerlässlich. Selbst übliche Bin-Picking-Ansätze scheitern oft an den komplexen und miniaturisierten Bauteilgrößen mit im Mikrometerbereich liegenden Toleranzen. Hierfür sind neue Greifersysteme und Messanordnungen notwendig. Neben den üblichen berührungslosen Messverfahren, wie einer telezentrischen-Profilvermessung mit industrieller Bildverarbeitung, sind weitere Kamerasysteme für Kalibrieraufgaben und Überwachungsaufgaben im Einsatz. Daneben werden eigens entwickelte Messsysteme verwendet, welche die bisher von Hand ausgeführten manuellen Prüfungen übernehmen, um 1:1 die geforderten Normen für die Bauteilsicherheit zu erfüllen. In manchen Fällen kann allerdings nicht der gesamte Prozess in einer Messzelle automatisiert werden. Für diese Sonderlösungen werden mehrere Module in Reihe geschaltet bzw. mit kollaborativen Robotern in einen vorhandenen Prozess eingebettet.

Roboterbasierte Messmodule

 Zusammen mit St?ubli Roboter, hat Rob-swiss Messmodule f?r die automatische Vermessung von miniaturisierten Bauteilen entwickelt. (Bild: Opto GmbH)

Zusammen mit Stäubli Roboter, hat Rob-swiss Messmodule für die automatische Vermessung von miniaturisierten Bauteilen entwickelt. (Bild: Opto GmbH)

Immer öfter werden zusätzliche Fehleranalysen der Bauteiloberflächen gefordert die aufgrund der oft kontrastarmen Oberflächen optisch kaum erkennbar sind. Hierfür hat die Opto GmbH neue Technologien für die mikroskopische Bildanalyse entwickelt die erstmals eine normgerechte Analyse der Bauteilstruktur zulässt. Kombiniert mit Deep-Learning-Algorithmen lassen sich somit auch komplexe Messaufgaben aus der Medizintechnik realisieren. Da jedes Bauteil neue Anforderungen an die Produktsicherheit hat, ist eine Vollständigkeitsprüfung dabei immer wieder eine neue Herausforderung und erschwert daraus wiederkehrende Messaufgaben. Mit dem Ansatz von einzelnen Messmodulen hat Robswiss zusammen mit Stäubli Robotern einen ersten Schritt zur Standardisierung der Automatisierung gemacht. Um dem gestiegenen Bedarf an industriellen Messlösungen für Implantate und komplexen Schrauben in der Medizintechnik zu begegnen, können die beschriebenen Module nun den immer höheren Anforderungen an dokumentierter Bauteilprüfung erstmals gerecht werden. ‚Don’t do it‘ ist also keine Option mehr, sondern nur noch ‚Do it 100%‘.

Anzeige

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Das kamerabasierte portable Koordinatenmessgerät (KMG) MoveInspect XR8 erfasst geometrische Eigenschaften und Veränderungen dreidimensional und liefert hochgenaue Daten. Es basiert auf der Moveinspect Technology und besteht aus zwei 8MP Digitalkameras in einem geschlossenen Kamerabalken. Die kalibrierten Kameras sind mit integrierten Blitzen ausgestattet und somit unabhängig von jeglichem Umgebungslicht. Der handgehaltene Messtaster MI.Probe ermöglicht Messungen mit totaler Bewegungsfreiheit, während die Moveinspect Software zu jedem Zeitpunkt die 3D Koordinaten von Objektpunkten oder die 6DOF von Festkörpern bestimmt.

www.aicon3d.de

Anzeige

Die vier Hochleistungsinfrarotkameras für den Bereich Forschung und Wissenschaft X6800sc (640x512Pixeln; 502fps), A8200sc (1.024×1.024 Pixel) und X8500sc für das Mittelwellenspektrum (MWIR) sowie die A6260sc für das Kurzwellenspektrum (SWIR) bieten hohe Bildaufnahmeraten und Empfindlichkeit für anspruchsvollste Anwendungen. Dabei kombiniert jede der vier Plattformen Funktionen wie Fernauslösung und präzise Synchronisierung mit fortschrittlicher Wärmebildtechnologie, damit die Forscher stets exakte Temperaturmessungen vornehmen können.

www.flir.com

Anzeige

Der Wellenfrontsensor SHSLab dient zur die Prüfung von Optiken, optischen Systemen und Lasersystemen. Das Messprinzip ermöglicht die Erfassung von Wellenfronten durch eine einzelne Messung, so dass er schnell und unempfindlich gegenüber externen Einflüssen ist. Ein Mikrolinsen-Array transformiert die lokalen Propagationsrichtungen der Lichtstrahlen in ein Feld von Fokuspunkten auf einer Kamera. Die Abweichung der Fokuspunkte von ihren Referenzpositionen wird berechnet und schließlich die Wellenfront durch numerische Integration.

www.optocraft.com

Anzeige

Das Hochgeschwindigkeitsglastellersystem TAVI.01 – XL kann bis zu 100.000 Teile pro Stunde prüfen und sortieren. Dank des vergrößerten Glastellers lassen sich Sensoren für unterschiedlichste Prüfaufgaben integrieren. Bis zu 16 Sortierkanäle für kundenspezifische Sortierwünsche bieten die Möglichkeit, Teile nach spezifischen Defekten zu sortieren. Ob Dichtungen oder Stopfen aus verschiedenen Elastomeren, Sinterteile, Stanz- oder Feinschneidteile, Drehteile oder Spritzgussteile, die Systeme lassen sich für nahezu jedes Material konfigurieren.

www.nela.de

Bei der Bin-Picking-Lösung von Liebherr wird ein zweistufiges Triangulationssystem eingesetzt. Dadurch ergibt sich eine deutlich verbesserte Auflösung. Während bisherige Bilderkennungssystem nach dem Laserlaufzeitverfahren bei 3 bis 5mm Genauigkeit an seine Grenzen stieß, erreicht das neue System eine zehnfach höhere Auflösung. Zudem werden die Schattenbildung und das Kollisionsrisiko reduziert. Dadurch gelingt dem achtachsigen Roboterarm selbst der Griff in bis zu 1m tiefe Transportbehälter. Das neue Bilderkennungssystem verfügt über einen Blaulichtlaser. Mit nur einer linearen Bewegung erfasst das System den Behälterinhalt, ohne eine vorherige Positionierung des 3D-Visionsystems.

www.liebherr.de

Auf dem Weg zur Losgröße 1 müssen Karosseriebauer schon heute eine wachsende Variantenvielfalt auf ein und derselben Produktionslinie bewältigen. Dies erfordert immer kürzere Anlaufzeiten für den Produktionsprozess und eine gleichbleibend hohe Prozesssicherheit trotz kurzfristiger Anpassungen. Genau auf diese Anwendungen ist der optische 3D-Sensor AIMax Cloud zugeschnitten. ‣ weiterlesen

Anzeige

www.zeiss.de

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige