Keine Experimente

Tipps zur richtigen Beleuchtung von großen Flächen

Wenn es darum geht, wie man große Bereiche bei einer Pick&Place-Applikation in der Robotik beleuchtet, stellen sich die immer gleichen Fragen: Wie schütze ich meine Applikation vor dem Umgebungslicht? Wie stellt man sicher, dass das Personal an der Maschine nicht von der Beleuchtung abgelenkt wird oder wie wird die Beleuchtung eingebaut, um Kollisionen mit den beweglichen Teilen der Maschine zu verhindern?
Leider ist dies nicht das einzige Problem, um das man sich kümmern muss. Denn die eigentliche Aufgabe der Beleuchtung besteht ja darin, einen guten, konstanten und verlässlichen Kontrast entsprechend der Anforderung der Kamera bereit zu stellen. Und dann müssen Sie sich noch überlegen, welche Beleuchtung Sie aus dem großen zur Verfügung stehenden Angebot auswählen und wo und wie Sie diese platzieren. Allerdings ist es meist so, dass die Beleuchtungs-Thematik erst ganz am Ende kommt, lange nachdem alle anderen Punkte bereits durch die Mechanik(er) entschieden sind. Natürlich ist die Handhabung der Kundenprodukte niemals so einfach, wie wir das gerne hätten. Allerdings braucht man sich auch keine Gedanken darüber zu machen, wie der Roboter Teile greifen soll, wenn er sie gar nicht sieht. Selbst ich, als technischer Ingenieur mit großer Erfahrung im Bau von Anlagen mit integrierter Bildverarbeitung im Robotik-Bereich, lag früher häufig falsch. Manchmal dachte auch ich über die Integration der Bildverarbeitung erst nach dem Anlagendesign nach, also wenn es richtig schwierig wird, weil niemand – auch nicht der Kunde – das Thema Beleuchtung berücksichtigt hatte. Inzwischen bin ich Hersteller von Beleuchtungen für die Bildverarbeitung und derjenige, der sich damit quält, die richtige Beleuchtung zu finden, die noch in den verbliebenen Platz in der Anlage passt, aber gleichzeitig auch den Vision-Spezialisten zufrieden stellt. So frage ich mich manchmal, ob die Anwender wirklich wissen, was zwischen Licht und Objekt passiert, also wie die Interaktion funktioniert.

Wie bekomme ich einen guten Kontrast?

Zuerst muss die Applikation durch entsprechende Einhausungen und Bandpassfilter vom Umgebungslicht geschützt werden. Ein anderer Weg ist es, den Bereich mit einem leistungsstarken Licht auszuleuchten. Eine solche starke Beleuchtung erlaubt (a) die Reduzierung der Belichtungszeit, um Bewegungsunschärfen zu verhindern und den Einfluss des Umgebungslichts zu limitieren und (b) die Iris zu schließen und die Sichtfeldtiefe zu erhöhen. Als nächstes muss der Kontrast erhöht werden, in dem die richtige Leuchtfarbe gewählt wird, z.B. wird ein Stück Fleisch (rot) auf einem blauen Fließband besser mit einem roten Licht beleuchtet, sodass für die Kamera das Fleisch weiß und der Untergrund schwarz erscheint. Bild 1 zeigt, wie sich der Kontrast durch die richtige Lichtfarbe verbessert. Oder es wird infrarotes Licht eingesetzt, wenn die Farben nicht erkannt werden sollen. Anschließend muss das Objekt ausgerichtet werden, denn die Graustufen der Pixel stehen im direkten Zusammenhang mit der Menge Licht, die das Objekt erhält. Ein schwarzer Pixel bedeutet: kein Licht. Ein weißer: reichlich. Wenn man das weiß, wird eine Berechnung, wie das aufgenommene Bild entsprechend der gewählten Beleuchtung sein wird, recht einfach.

Anzeige

Beleuchtung großer Flächen

Allerdings ist es nicht so einfach, wenn es um die Beleuchtung von großen Flächen geht. Sehr häufig nutzt der Anlagenbauer eine einzelne Kamera, um ein großes Feld zu betrachten. In diesem Fall ist eine Simulation, wie sich die Lichtstrahlen verhalten hilfreich, denn so wird verständlich, wie das resultierende Bild für die Kamera zustande kommt. Dafür benötigt man keine komplizierte oder teure Software, sondern nur ein Stück Papier, einfache zeichnerische Fähigkeiten und etwas Logik. Als Beispiel wollen wir eine Palette mit Kartons (2x1m) mit einem Arbeitsabstand von einem Meter von oben beleuchten. Die Kamera wird mit einem kleinen Abstand zum Objekt angeordnet, um nicht gewollte Effekte zu umgehen. Dann soll die Palette mit einer Hochleistungs-Ringleuchte beleuchtet werden, die direkt an der Kamera montiert ist und mit weißen Linsen ausgestattet sein soll. Jeder kennt das Ergebnis: Ein grelles, blendendes Licht in der Mitte und nichts am Rand. Aber warum erhalten wir dieses Resultat? Bild 2 hilft bei der Erklärung. Dieser ungewollte Effekt kann zwar reduziert werden, indem man den Abstand H erhöht, allerdings kann man ihn nicht eliminieren. Durch den Streueffekt erhält man kein wirkliches Bild am Rand, da direkte Lichtstrahlen, die auf eine Oberfläche treffen, ‚explodieren‘ und Streuung entstehen lassen (Ausnahme: die beleuchtete Oberfläche ist sehr glänzend, z.B. poliertes Metall).

Das könnte Sie auch interessieren

Die neue Generation der prismabasierten Multi-CMOS-Sensor Flächenkameraserie Apex hebt die Farbabbildung auf eine neues Niveau. Mit einem optimierten dichroitischen Prisma und der neuen Sony Pregius CMOS Generation mit Global Shutter Technologie ist die Kameraserie auf dem modernsten Stand der Farbbildgebung.

Anzeige

www.jai.com

Anzeige

Die Messsoftware Metrolog 3D erfasst und analysiert systemübergreifend Daten und visualisiert anschließend alle Arten von 3D-Messungen. Die neue Version X4 wurde entwickelt, um mit einer einzigen Softwareplattform mit jeder Art von System und Technologie der Messtechnik arbeiten zu können.‣ weiterlesen

www.metrologicgroup.fr

Für einige ist künstliche Intelligenz (KI) ein Segen, für andere ein Fluch. Wo Sie sich dabei einordnen, hängt in hohem Maß davon ab, ob Sie der Angst ausgesetzt sind, in Kürze Ihren Job an einen modernen C-3PO zu verlieren. Trotzdem müssen wir alle der Realität ins Auge blicken – eine Realität, die keine menschliche Interaktion erfordert.‣ weiterlesen

www.teledynedalsa.com

Anzeige

Das ADLVIS-1700-System unterstützt zwei CXP-6-Ports (1.250MB/s) oder einen vierkanaligen Camera Link-Port (bis zu 680MB/s). Mit bis zu vier wechselbaren 2,5″ SATA 6Gb/s SSDs und RAID-0/1/5/10-Support kombiniert es einen IPC mit wechselbaren CXP- oder CL-Bildverarbeitungskarten und einem großen und schnellen Massenspeicher. Dadurch werden hohe Schreib- und Lesegeschwindigkeiten erzielt und die einfache Entnahme der Laufwerke im Betrieb ermöglicht. Das Schnittstellenangebot umfasst in der Standard-Ausstattung zwei Gigabit-LAN-, zwei USB2.0- und zwei COM-Ports. Über den internen PCIe/104-Bus bestehen Erweiterungsmöglichkeiten, u.a. vier Gigabit-LANs, vier USB3.0-Ports und vier mPCIe-Carrier.

www.adl-europe.com

Anzeige

Die für den Dauereinsatz geeigneten IR-Linienkameras Pyroline ermöglichen Messgeschwindigkeiten bis zu 2.000 Linien/sec bei simultaner Messung aller Messpunkte und dies für Messtemperaturen von 600 bis 3.000°C. Neben der Standardvariante Pyroline 512N mit 256 Zeilen/sec gibt es auch die Variante HS 512N mit 2.000 Zeilen/sec. Als Kameragehäuse werden zwei Versionen angeboten. Bei der Variante compact+ kommt ein IP54-Aluminiumgehäuse zum Einsatz. In der Version protection befindet sich die Kamera in einem IP65-Industrieschutzgehäuse aus Edelstahl mit Luftspülung, Wasserkühlung und Schutzfenster, so dass Umgebungstemperaturen von bis zu 150°C möglich sind.

www.dias-infrared.de

Stromsparend, kompakt und vielseitig erweiterbar – drei Eigenschaften, die den Embedded Box PC Tank-870e-H110 ausmachen. Der IPC überzeugt mit performanten Quad C Intel Quad Core i7- oder i5-Prozessoren (max. 32GB DDR4 SO-DIMM Arbeitsspeicher) und ist dank max. 35W TDP stromsparend. Eingebettet in ein lüfterloses Aluminiumgehäuse mit den Maßen 132x255x190mm ist er standardmäßig mit drei Erweiterungsslots ausgestattet. Große Erweiterungsvielfalt bieten drei Backplane Varianten mit PCIe x4, PCIe x16, PCI und zwei Fullsize PCIe Mini Card Slots. Die an der Front herausgeführten I/O- Schnittstellen umfassen vier USB3.0, zwei isolierte RS-232/422/485, zwei RJ-45 GbE LAN und Audio.

www.icp-deutschland.de

Anzeige