Keine Experimente

Tipps zur richtigen Beleuchtung von großen Flächen

Wenn es darum geht, wie man große Bereiche bei einer Pick&Place-Applikation in der Robotik beleuchtet, stellen sich die immer gleichen Fragen: Wie schütze ich meine Applikation vor dem Umgebungslicht? Wie stellt man sicher, dass das Personal an der Maschine nicht von der Beleuchtung abgelenkt wird oder wie wird die Beleuchtung eingebaut, um Kollisionen mit den beweglichen Teilen der Maschine zu verhindern?
Leider ist dies nicht das einzige Problem, um das man sich kümmern muss. Denn die eigentliche Aufgabe der Beleuchtung besteht ja darin, einen guten, konstanten und verlässlichen Kontrast entsprechend der Anforderung der Kamera bereit zu stellen. Und dann müssen Sie sich noch überlegen, welche Beleuchtung Sie aus dem großen zur Verfügung stehenden Angebot auswählen und wo und wie Sie diese platzieren. Allerdings ist es meist so, dass die Beleuchtungs-Thematik erst ganz am Ende kommt, lange nachdem alle anderen Punkte bereits durch die Mechanik(er) entschieden sind. Natürlich ist die Handhabung der Kundenprodukte niemals so einfach, wie wir das gerne hätten. Allerdings braucht man sich auch keine Gedanken darüber zu machen, wie der Roboter Teile greifen soll, wenn er sie gar nicht sieht. Selbst ich, als technischer Ingenieur mit großer Erfahrung im Bau von Anlagen mit integrierter Bildverarbeitung im Robotik-Bereich, lag früher häufig falsch. Manchmal dachte auch ich über die Integration der Bildverarbeitung erst nach dem Anlagendesign nach, also wenn es richtig schwierig wird, weil niemand – auch nicht der Kunde – das Thema Beleuchtung berücksichtigt hatte. Inzwischen bin ich Hersteller von Beleuchtungen für die Bildverarbeitung und derjenige, der sich damit quält, die richtige Beleuchtung zu finden, die noch in den verbliebenen Platz in der Anlage passt, aber gleichzeitig auch den Vision-Spezialisten zufrieden stellt. So frage ich mich manchmal, ob die Anwender wirklich wissen, was zwischen Licht und Objekt passiert, also wie die Interaktion funktioniert.

Wie bekomme ich einen guten Kontrast?

Zuerst muss die Applikation durch entsprechende Einhausungen und Bandpassfilter vom Umgebungslicht geschützt werden. Ein anderer Weg ist es, den Bereich mit einem leistungsstarken Licht auszuleuchten. Eine solche starke Beleuchtung erlaubt (a) die Reduzierung der Belichtungszeit, um Bewegungsunschärfen zu verhindern und den Einfluss des Umgebungslichts zu limitieren und (b) die Iris zu schließen und die Sichtfeldtiefe zu erhöhen. Als nächstes muss der Kontrast erhöht werden, in dem die richtige Leuchtfarbe gewählt wird, z.B. wird ein Stück Fleisch (rot) auf einem blauen Fließband besser mit einem roten Licht beleuchtet, sodass für die Kamera das Fleisch weiß und der Untergrund schwarz erscheint. Bild 1 zeigt, wie sich der Kontrast durch die richtige Lichtfarbe verbessert. Oder es wird infrarotes Licht eingesetzt, wenn die Farben nicht erkannt werden sollen. Anschließend muss das Objekt ausgerichtet werden, denn die Graustufen der Pixel stehen im direkten Zusammenhang mit der Menge Licht, die das Objekt erhält. Ein schwarzer Pixel bedeutet: kein Licht. Ein weißer: reichlich. Wenn man das weiß, wird eine Berechnung, wie das aufgenommene Bild entsprechend der gewählten Beleuchtung sein wird, recht einfach.

Beleuchtung großer Flächen

Allerdings ist es nicht so einfach, wenn es um die Beleuchtung von großen Flächen geht. Sehr häufig nutzt der Anlagenbauer eine einzelne Kamera, um ein großes Feld zu betrachten. In diesem Fall ist eine Simulation, wie sich die Lichtstrahlen verhalten hilfreich, denn so wird verständlich, wie das resultierende Bild für die Kamera zustande kommt. Dafür benötigt man keine komplizierte oder teure Software, sondern nur ein Stück Papier, einfache zeichnerische Fähigkeiten und etwas Logik. Als Beispiel wollen wir eine Palette mit Kartons (2x1m) mit einem Arbeitsabstand von einem Meter von oben beleuchten. Die Kamera wird mit einem kleinen Abstand zum Objekt angeordnet, um nicht gewollte Effekte zu umgehen. Dann soll die Palette mit einer Hochleistungs-Ringleuchte beleuchtet werden, die direkt an der Kamera montiert ist und mit weißen Linsen ausgestattet sein soll. Jeder kennt das Ergebnis: Ein grelles, blendendes Licht in der Mitte und nichts am Rand. Aber warum erhalten wir dieses Resultat? Bild 2 hilft bei der Erklärung. Dieser ungewollte Effekt kann zwar reduziert werden, indem man den Abstand H erhöht, allerdings kann man ihn nicht eliminieren. Durch den Streueffekt erhält man kein wirkliches Bild am Rand, da direkte Lichtstrahlen, die auf eine Oberfläche treffen, ‚explodieren‘ und Streuung entstehen lassen (Ausnahme: die beleuchtete Oberfläche ist sehr glänzend, z.B. poliertes Metall).

Das könnte Sie auch interessieren

Umfirmierung der MWF Roland Friedrich GmbH

Bereits 2015 wurde die MWF Roland Friedrich GmbH, Hersteller von kundenspezifischen Mess- und Prüflösungen aus Großostheim, von der Mahr Gruppe übernommen. Nun folgte auch die Umfirmierung der Tochtergesellschaft des Fertigungsmesstechnik-Herstellers in Mahr MWF GmbH. Ziel dabei sei, das Unternehmen noch sichtbarer in die Qualitätsmarke Mahr einzufügen und dadurch noch internationaler zu vermarkten.

www.mahr.com

Partnerschaft Matrix Vision und Metrilus

Matrix Vision ist eine Partnerschaft mit dem Unternehmen Metrilus GmbH aus Erlangen eingegangen. Metrilus ist eines der ersten Unternehmen weltweit, das sich auf Komplettlösungen für Echtzeit-3D-Bildverarbeitungsanwendungen spezialisiert hat. In Verbindung mit der 6D-Perception Camera mbBlueSirius von Matrix Vision bietet Metrilus zukünftig Beratung, Entwicklung von Prototypen und Software-Lösungen an.

www.matrix-vision.com

Vervierfachtes geometrisches Auflösungsvermögen

MicroScan ermöglicht das Bildformat einer radiometrische Thermografiekamera mit gekühltem FPAPhotonen-Detektor zu vervierfachen. Für Modelle der High-End-Kameraserie ImageIR bedeutet dies, dass sich Aufnahmen mit bis zu 2.560×2.048 IR-Pixeln erstellen lassen. Hinter der Funktion verbirgt sich ein schnell rotierendes MicroScan-Rad, das in der Kamera integriert ist. Es sorgt dafür, dass pro Radumdrehung vier verschiedene Einzelaufnahmen entstehen, die zueinander jeweils um ein halbes Pixel lateral versetzt sind. Die Einzelaufnahmen werden in Echtzeit zu einem Thermogramm mit vierfachem Bildformat zusammengeführt.

www.InfraTec.de

Wellenfrontsensor für die Optikprüfung

Der Wellenfrontsensor SHSLab dient zur die Prüfung von Optiken, optischen Systemen und Lasersystemen. Das Messprinzip ermöglicht die Erfassung von Wellenfronten durch eine einzelne Messung, so dass er schnell und unempfindlich gegenüber externen Einflüssen ist. Ein Mikrolinsen-Array transformiert die lokalen Propagationsrichtungen der Lichtstrahlen in ein Feld von Fokuspunkten auf einer Kamera. Die Abweichung der Fokuspunkte von ihren Referenzpositionen wird berechnet und schließlich die Wellenfront durch numerische Integration.

www.optocraft.com

Anzeige
Kamera-Kompositgehäuse für Roboteranwendungen

Der Kamerakopf des Bildverarbeitungssystem Robot Inspector for Integrity Analysis (RIITTA) ist eine kompakte Einheit, die alle Einzelkomponenten wie Kamera, Objektiv, blitzbare LED-Beleuchtung und Ansteuerelektronik in einem Spezialgehäude vereint. Das leichte Kompositgehäuse ist IP65-geschützt und bietet Schutz vor Staub und Spritzwasser. Die Eigenschaften der verwendeten Materialien in Verbindung mit dem Design des Gehäuses vermeiden Trägheitsmomente, die vor allem bei Roboteranwendungen eine entscheidende Rolle spielen.

www.asentics.de

Anzeige
Neuer Geschäftsführer bei Omron Electronics

 

Zuvor war Kluger als Managing Director Europe und Vice President Business Development für Adept Technology, später für Omron Adept Technologies tätig. Außerdem ist er als ehrenamtliches Vorstandsmitglied im Fachverband Robotik des VDMA aktiv.

www.industrial.omron.eu

Anzeige