Kollisionsfreies Greifen

Extrem schnelles Bin Picking für Kleinroboter

Schnelles, zuverlässiges und sicheres Bin Picking ist derzeit eine der spannendsten Herausforderungen in der Automation. Anders als beim herkömmlichen Pick&Place liegen die Werkteile ungeordnet in einem Kasten, im Zusammenspiel von leistungsstarker Bildverarbeitung und Robotersteuerung kann der Roboter die Teile erkennen, selektieren und sicher greifen.

Ein kurzes Video von der letzten Motek mit dem Bin Picking-System von Denso Robotics ist auf Youtube zu sehen www.youtube.com/watch?v=RoOKgUPxlYg.

Bislang ist es aber noch in vielen Industriezweigen, z.B. Automobilbau, bei vielen Aufgaben einfacher, Werkteile unsortiert zu verarbeiten; in der Regel geschieht dies (selbst nach mechanischer Vorbereitung wie Rüttelförderbänder) durch manuelle Entnahme oder Sortierung bzw. Beladung. Mechanische oder manuelle Entnahme weisen aber viele Nachteile auf: Fehlerhäufigkeit, Kosten, großer Platzbedarf, Unflexibilität. Die robotergestützte Entnahme oder Beladung kann hier deullich mehr Effizienz, Geschwindigkeit und Genauigkeit bringen. Für kleine Werkteile gibt es aber bislang noch kein wirklich zufriedenstellendes, marktreifes Bin Picking, denn die Bildverarbeitung benötigte bisher hohe Rechnerleistungen und viel Zeit. Schließlich müssen große Datenmengen in Echtzeit verarbeitet werden. Doch gerade Geschwindigkeit und Genauigkeit sind entscheidend, damit diese Anwendung wirtschaftlich ist. Wichtig ist ferner das problemlose Zusammenspiel von Kamera, 3D-Bilderkennung und Robotersteuerung; denn das Objekt in der Kiste muss nicht nur identifiziert, sondern der Roboter auch genau geführt werden, denn die Roboterachsen bieten zahlreiche Bewegungsrichtungen – und der Greifer darf dabei nicht mit seinem Umfeld (z.B. Kiste) kollidieren.

Anzeige

Teileerkennungszeit von zwei Sekunden

Denso Robotics hat nun in einer Zusammenarbeit mit Canon eine Applikation realisiert, von deren Geschwindigkeit und Zuverlässigkeit sich die Fachwelt bereits auf der letzten Motek überzeugen konnte. Dort demonstrierte ein VS060 Roboter im Zusammenspiel mit der Canon 3D-Kamera RV300 und einem PC den aktuellen Stand des technisch Möglichen im Bin Picking. Als Objekte dienten kleine Pfefferminzdosen, deren asymmetrische Form und spiegelnde Oberfläche (rundlich und mit einer Wölbung im Deckel) die 3D-Bilderkennung vor eine besondere Herausforderung stellte. Um es vorweg zu nehmen: Je nach Kameratyp lag die Erkennungszeit je Teil bei nur 1,8 bis maximal drei Sekunden. Das ist derzeit sicher die höchste Geschwindigkeit im Bin Picking bei kleinen, kompliziert geformten Teilen. Gleichwohl ist das Zusammenspiel zwischen Roboter und 3D-System einfach aufgebaut, schließlich soll es für die Kunden in der Handhabung unkompliziert sein. Das System besteht aus zwei Subsystemen, einem 3D-Visionsystem, das Position und Dimensionen des zu greifenden Teils misst und identifiziert; sowie der Robotik, welche die Teile automatisch greift und ablegt. Die Bildverarbeitung lässt sich in drei Bestandteile aufgliedern: Dem eigentlichen 3D-Bildverarbeitungssystem (Projektion des Datenmusters und Identifizierung), der Bilderkennungs-Software (Erkennung der Teile nach Musterdaten) sowie dem RC-I/F-Modul, welches mit dem Robotercontroller kommuniziert. In einem ersten Schritt müssen die 3D-Daten des Objektes in die Kamerasoftware eingelesen werden. Übrigens müssen auch die 3D-Dimensionen des Greifers in 3D konstruiert werden, damit im Ablauf potenzielle Kollisionen rechtzeitig erkannt und verhindert werden. Auf dieser Grundlage legt die Software in einem zweiten Schritt vom Objekt eine 3D-Daten-Bibliothek an, auf dessen Grundlage die Kamera später Muster zum Datenabgleich projiziert. Nun beginnt die eigentliche Anwendung. Dabei vergleichen Kamera und Software das Objektmuster mit jedem Teil in der Kiste. Das Visionsystem sucht nach der passenden 3D-Wolke, also den einzelnen, mit dem Muster übereinstimmenden 3D-Messpunkten eines Teiles. Stimmen diese mit den programmierten Daten überein, folgt die Übermittlung der Daten an den Roboter und Greifer, so dass dieser das zu greifende Objekt genau ansteuert. Kamera und Software müssen dabei berechnen, ob der Roboter das identifizierte Teil ohne Kollision greifen kann, d.h., der Roboter empfängt überhaupt nur Daten von erreichbaren Teilen. Im letzten Schritt greift der Roboter das Teil und kann es ablegen. Die Kamera-Software und Bildverarbeitung laufen auf einem Hoch-leistungsrechner. Die Schnittstelle Kamera-Rechner erfolgt über Ethernet; der Rechner kommuniziert per TCPIP mit dem RC8 Controller von Denso, der den Roboterarm steuert. Der PC sendet die Koordinaten direkt an den Controller, der damit im Grunde wie ein Server fungiert. Der Controller wird in der Programmiersprache PacScript programmiert, eine eigens entwickelte Denso-Software für die Schnittstelle Kamera-Roboter. Musterprogramme für die Einbindung der Kamera sowie zur Kalibrierung und Einrichtung des Roboters existieren bereits. Ziel der weiteren Forschungs- und Entwicklungsarbeit ist, dass die 3D-Berechnungen so schnell erfolgen, dass der Roboter keine Wartezeit mehr verliert. In zwei bis drei Jahren wird das System – derzeit sicher das schnellste im Markt – so weit sein, um den ‚Griff in die Kiste‘ in verschiedensten Industriebereichen umfassend einführen zu können.

Das könnte Sie auch interessieren

Wie können komplette 3D-Daten erfasst, interne Defekte in Gussteilen erkannt und sogar deren 3D-Koordinaten bestimmt werden? Das Unternehmen Carl Zeiss Industrielle Messtechnik GmbH hat ein informatives Video veröffentlicht, in dem die Inline-Prozessinspektion mit dem Zeiss VoluMax in der Leichtmetallgießerei am BMW-Produktionsstandort Landshut veranschaulicht wird.

Anzeige

Klassische Wärmebildkameras benötigen einen mechanischen Shutter, mithilfe dessen ca. alle 2 bis 3 Minuten Referenzdaten zur Kalibrierung der Wärmebilddarstellung und der Temperaturmessung aufgenommen werden. Jedoch erzeugt das Schließen des Shutters ein Geräusch und die Videoaufzeichnung ist während dieser Zeit unterbrochen. Daher hat Tamron nun ein Shutter-loses Wärmebildkameramodul auf Basis eines amorphen Silikonwärmebildsensors entwickelt. Dieser Sensor verfügt über eine exzellente Temperaturwiedergabe selbst wenn sich seine eigene Temperatur verändert.

www.tamron.eu

Der Industriescanner VTCIS ist in der Lage, im Druckbild fehlende Nozzles bei einer Auflösung von 1.200dpi automatisch zu detektieren. Da der CIS (Compact Image Sensor) nicht das komplette Bild einzieht, sondern nur bestimmte Bereiche scannt, wird die Datenverarbeitung vereinfacht und die Datenmenge deutlich reduziert. Außerdem garantiert die integrierte Flüssigkeitskühlung Farbstabilität über den gesamten Druckprozess hinweg und schließt Farbabweichungen aus. Dank einer Zeilenrate von bis zu 250kHz und einer Abtastgeschwindigkeit von bis zu 20m/s ist der Scanner für sehr schnell laufende Druckprozesse bestens geeignet.

www.tichawa.de

Die neuesten Versionen der 3D-Kameras für Lasertriangulation erreicht Triangulationsraten von bis zu 68kHz. Die Kamera basiert dabei auf einem 2/3″ Hochgeschwindigkeitssensor von Cmosis, der auch bei schwachen Lichtverhältnissen eine hervorragende Leistung erbringt. Als Schnittstelle verwendet die 3D05 das standardisierte GigEVision-Interface. Für eine einfache Integration und Synchronisierung besitzt die Kamera eine komplette, in die Kamera integrierte Drehgeberschnittstelle (RS422 und HTL). Das HTL-Interface ermöglicht dabei auch einen stabilen und effizienten Einsatz in der Schwerindustrie oder Bereichen mit starken elektrischen Störquellen.

www.photonfocus.com

Sensoren bis zu 1/1.2 und 1″ wurde die HF-XA-5M Objektivserie von Fujinon entwickelt. Die Objektive erreichen eine konstant hohe Auflösung von 5MP über das gesamte Bildfeld – bei einem Pixelabstand von 3,45µm. Dies gilt bei offener Blende ebenso wie bei verschiedenen Arbeitsabständen. Mit 29,5mm Außendurchmesser eignen sich die Objektive für platzkritische Anwendungen.

www.polytec.de

Die Messsoftware Wave ist für den hochpräzisen Wegmesssensor IDS3010. Damit können Messdaten in Echtzeit analysiert, verarbeitet und ausgewertet werden. Die Software verfügt über verschiedene Funktionen zur Visualisierung und Analyse von Daten, beispielsweise können die angezeigten Messdaten vergrößert/verkleinert werden oder die Datenvisualisierung kann gestoppt werden, um bestimmte Zeitbereiche zu analysieren. Außerdem ist eine Live Fast-Fourier-Transformation von Messwerten implementiert.

www.attocube.com

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige