Anzeige
Anzeige

Längenvergleich

Verwirrung um maximal mögliche (USB-)Verkabelungslängen

Wer das Internet befragt hat, ob benötigte Kabellängen in der gewünschten Schnittstelle realisierbar sind, wird überrascht sein, wie viele unterschiedliche Antworten man für die gleiche Frage bekommen kann. Was ist aktuell aber wirklich darstellbar?

 Für Interfaces, wie USB 3.0/3.1, Ethernet über RJ45, CameraLink (HS) oder CoaXpress, ergeben sich unterschiedliche maximale Kabellängen, die von verschiedenen Faktoren abhängen. (Bild: Alysium-Tech GmbH)

Bild 1 | Für Interfaces, wie USB 3.0/3.1, Ethernet über RJ45, CameraLink (HS) oder CoaXpress, ergeben sich unterschiedliche maximale Kabellängen, die von verschiedenen Faktoren abhängen.(Bild: Alysium-Tech GmbH)

„Kabellängen bis 5m sind gerade so realisierbar“, „USB-IF konform bis max.2m“, „alles über 3m geht nur aktiv“ usw. Wer bereits einmal USB3.1 Gen1 (5G) für seine Applikation als Schnittstelle auserkoren hat, wird sicherlich über solche Argumente gestolpert sein. Doch worauf basieren diese Aussagen und welche ist richtig? Als USB3.1 (damals noch USB3.0) als Plug&Play und günstige Konsumerschnittstelle für die Industrie eingeführt wurde, machte man sich die Qualifizierung der Verkabelungen recht einfach. Man übernahm einfach die USB-IF Vorgaben, die keine Kabellänge in Meter vorgibt, aber durch die Fixierung einiger elektrischer Grenzwerte, eine maximal mögliche Kabellänge durch die Verlustleistung limitiert. Aktuell geht man davon aus, dass eine 100% kompatible USB-IF Verkabelung maximal eine Länge von 2m erreichen kann. Dieser Wert ist jedoch nur gültig für die üblichen im Bildverarbeitungsbereich eingesetzten USB A auf MicroB Verkabelungen, da auch die eingesetzten Steckverbinder-Varianten Einfluss auf die erreichbaren Kabellängen haben.

USB

Wer sich die üblichen Industrieapplikationen ansieht, wird aber feststellen, dass die benötigten Kabellängen eher im Bereich von drei bis acht Meter liegen. Hersteller wie z.B. Alysium haben daher auf diese Anforderung frühzeitig reagiert. Bereits bei der Präsentation der ersten USB3.0 (5G) Kamera, wurden passive Kabellängen von bis zu 8m vorgestellt. Wie ist dies aber möglich? Alysium fokussiert sich mit seinen Verkabelungen auf den Industrie- und Automotive-Markt, d.h. man setzte hier den Schwerpunkt auf ‚Fit for Applikation‘ in der Entwicklung. Durch ein hohes Verständnis dieser Zielmärkte und der Zusammenarbeit mit Kunden und Hersteller aus diesem Sektor, hat man Verkabelungen entwickelt, die sich möglichst nah an dem USB-IF Standard bewegen, jedoch die Zielsetzung haben, die eigentliche Zielapplikation stabil und sicher zu unterstützen. Durch diese Ausrichtung wurden z.B. Rohkabel entwickelt, die im Konsumerbereich nicht eingesetzt werden. Ob nun durch den Einsatz eines größeren Querschnittes, z.B. der stromführenden Leitungen oder der Einsatz von Coax für die Superspeed (USB3.1) Signale: Durch dieses spezielle Design kann man inzwischen sicherstellen, dass passive Kabellängen von 8m stabil (24/7) in den üblichen Applikationen möglich sind. Auch Längen bis 10m sind inzwischen von einigen Partnern für bestimmte Applikationen freigegeben. Warum dies aber nur applikationsbedingt? Bei USB3.1 – wie auch bei vielen anderen Schnittstellen – entscheidet nicht nur eine Komponente, sondern das gesamte System über die ideale Kabellösung. Gerade auf Host-Seite gibt es stellenweise recht große Unterschiede in der Auslegung der USB3.1 Spezifikation, was dazu führen kann, dass z.B. weniger Strom zur Verfügung gestellt wird, als die eingesetzte USB3.1 Kamera benötigt. Wir empfehlen, sich mit dem Kamerahersteller bzw. Systemintegrator frühzeitig in Verbindung zu setzen. Diese haben meist bereits vollumfängliche Tests durchgeführt, und können entweder das optimale Gesamtsystem als Einheit anbieten oder entsprechende Empfehlungen aussprechen. Zusammengefasst kann man sich darauf verlassen, dass passive USB-Kabellängen von mindestens 8m für die Industrie stabil darstellbar sind (Stand: Oktober 2018) und diese auch durch speziell für die Industrie entwickelten aktiven Glasfaservarianten abgerundet wurden. Diese Varianten bieten Plug&Play auch für Schleppketten- und Roboterapplikationen bis zu 50m – inklusive Stromversorgung für die Kamera. Sollten in einer Applikation nur kürzere Kabellängen stabil funktionieren, empfehlen wir die Prüfung bzw. den Austausch der eingesetzten Komponenten. Auch im Bereich von USB3.1 Gen2 (10G) wird man zukünftig versuchen, die maximal mögliche Kabellänge im Kupferbereich durch ein ähnliches Vorgehen zu erweitern. Jedoch muss man hier verstärkt davon ausgehen, dass aktiv-optische Verkabelungen bereits bei kürzeren Längen zum Einsatz kommen werden.

Anzeige

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Mit Ansprechzeiten von 0,5ms lässt sich mit dem Weißlicht-Farbsensor FSB10 die Anwesenheit von farbigen Objekten und deren Qualität kontrollieren.‣ weiterlesen

www.di-soric.com

Anzeige

The ultrahigh-speed camera Phantom v1840 provides a very high image quality at 18Gpix/sec. It has the lowest noise floor of any Phantom camera and a high 64dB dynamic range.‣ weiterlesen

www.visionresearchinc.net

Anzeige

NaturalIQ is an AI approach that allows customers to automate subjective camera tuning by learning image quality (IQ) preferences from their own natural image datasets.‣ weiterlesen

www.algolux.com

Anzeige

Der Farbsensor CFO200 hebt die True Color Farberkennungssensoren der Reihe CFO auf eine neue Leistungsstufe. Bei einer Messfrequenz von 20kHz lassen sich 320 Farben in 254 Farbgruppen mit höchster Farbgenauigkeit detektieren.‣ weiterlesen

www.micro-epsilon.de

Anzeige

Nach der Weiterentwicklung des LineFinder IP-Cores, der in der MV1 Kameraserie verwendet wird, hat Photonfocus den IP-Core in vier MV0 Kameramodellen implementiert. ‣ weiterlesen

www.photonfocus.com

Anzeige

Die webbasierte Konfigurationsoberfläche und Ergebnisanzeige machen die Einrichtung der intelligenten Infrarotkameras der IRSX-Serie für thermische Überwachungsaufgaben einfach.‣ weiterlesen

www.automationtechnology.de

Anzeige

Der Vision Controller BT-9002-P6 ist dank Power-over-Ethernet-Anschlüssen auch für IP-Kameras geeignet. Die verbauten Prozessoren garantieren hohe Leistungen bei minimalem Stromverbrauch.‣ weiterlesen

www.bressner.de

Anzeige

In Kameras erfolgt die Abbildung von Objekten der realen Welt auf Bildsensoren nicht in idealer Weise. Die beteiligten mechanischen und optischen Baugruppen fügen beim Prozess der Abbildung vielfältige Abweichungen ein (Abbildungsfehler, Perspektive, schiefe/nicht mittige Lage des Bildsensors usw.), so dass Bilder verzerrt aufgenommen werden. Oft sind die Fehler nur klein und können nicht vom menschlichen Auge erfasst werden.‣ weiterlesen

www.evotron-gmbh.de

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige