Machine Vision goes Embedded

Schnittstellen Sensor-Board und Prozessor-Einheit/SoCs

Smartphones und Tablets haben unsere Sicht auf Bildaufnahme- und -verarbeitungskapazitäten von Kleinstcomputern verändert. Hohe Video- und Datenbandbreiten, bei gleichzeitig steigender Verarbeitungsleistung und niedrige Energiewerte, sowie eine fortschreitende Miniaturisierung bei höherer funktionaler Komplexität, haben das Interesse der Bildverarbeitung geweckt. Traut man aktuellen Umfragen, wird Embedded Vision einer der Technologietreiber der Zukunft sein. Aber welche Standards werden Embedded Vision und smarte Kameras für die Zukunft benötigen?
Als Abgrenzung zu ‚klassischen‘ Bildverarbeitungssystemen, die aus einer Vielzahl von Komponenten bestehen (Beleuchtung, Optiken, Kameras, Sensoren, Bildaufnahme- und -speichergeräte, Netzwerk-/Feldbusanbindungen…), definieren sich Embedded-Vision-Systeme über die Einbindung von Embedded IPCs als PXI-Plattform oder industrielle Ein-Platinen-Computer. Smart Cameras hingegen bestehen aus Sensoren und Prozessoreinheiten in einem kompakten und robusten Gehäuse, optional ausgestattet mit Beleuchtung und Optik. Die Softwareumgebung ist häufig proprietär und funktional fest definiert. Für die Untersuchung der EVSG (s.Kasten) wurden die Embedded IPCs nicht weiter betrachtet, um ein aussagekräftiges Modell zu erarbeiten. Die Anforderung an die Leistungsfähigkeit eingebetteter Systeme lehnt sich an klassische Vision-Systeme an, zusätzlich mit den Ausprägungen:

Smart: Embedded-Intelligenz

Small: Kleiner Formfaktor

Simple: Einfache Handhabung bei Usability und Softwareintegration

Um Anforderungen und Lösungsansätze zu erarbeiten, wurden von der ESVG drei Technologiefelder (SC=Standard Candidate) identifiziert, für die Arbeitsgruppen eingerichtet wurden.

SC1: Schnittstelle zwischen den Sensor-Boards und der Prozessor-Einheit/ System-on-a-Chip (SoCs)

SC2: Software API

SC3: Schnittstelle zwischen der Kamera und der Verarbeitungsumgebung

Schnittstelle Sensor-Board / Prozessor-Einheit

Die Bildverarbeitung bietet eine große Auswahl an Transportschichten für eine Verbindung zwischen einer Kamera und einem klassischen Desktop IPC bzw. Embedded IPC. Beispiele hierfür sind Camera Link (HS), CoaXPress, GigE Vision oder USB3 Vision. Die beste Option hängt jeweils von der Anwendung und deren Anforderungen ab, z.B. Bandbreite, Datenübertragungsformat, Robustheit, garantierte Signalintegrität, Distanzen zwischen Komponenten, Spannungsversorgung der Kamera oder auch Latenzen der Signalsteuerung. In einer Smart-Kamera unterscheiden sich Anforderungen an die Schnittstelle zwischen Sensorplatine und Verarbeitungseinheit bzw. SoC. Neben Bandbreite, Formfaktor der physikalischen Schnittstelle und des Steckers, sind die maximale Leitungslänge, die Energiewerte für Stromverbrauch und Wärmeableitung, die Definition der Industriequalität, Produktverfügbarkeit sowie Kosten weitere wichtige Entscheidungsfaktoren. Schwerpunkt der SC1 ist die Untersuchung, welche Schnittstelle diese Anforderungen am besten erfüllt.

Globale Trends als Thema

Videoaufnahmen und -verarbeitungen sind inzwischen in mobilen Geräten implementiert und funktionieren mit hoher Performance. Diese Technologien können auch für Embedded-Systeme eingesetzt werden. Allerdings werden in dieser Branche keine industriellen Sensoren verbaut oder langfristige Liefergarantien zugesagt, noch existiert eine Schnittstelle zwischen dem Sensor und einem FPGA, um z.B. BV-Protokolle zu implementieren. Die Verfügbarkeit von System-on-a-chip (SoC) als Prozessoren, integriert auf Boards und in Kombination mit FPGAs ist auf dem Elektronikmarkt in vielen Ausführungen gegeben. Als Fallbeispiele wurden in der Studie technische Umsetzung in Kameraköpfen, Smart-Sensoren und Vision SoC betrachtet. Die Anforderungsliste an SC1 umfasst dreizehn Einträge (Tab. 3).

Das könnte Sie auch interessieren

Embedded Vision Europe Conference 2017

Der europäische Bildverarbeitungsverband EMVA plant erstmals vom 12. bis 13. Oktober zusammen mit der Messe Stuttgart die Ausrichtung der Embedded Vision Europe (EVE) Conference in Stuttgart. Über die Ziele und Inhalte der Veranstaltung sprach inVISION mit Gabriele Jansen, Mitglied im ehrenamtlichen Vorstand der EMVA und Geschäftsführerin von Vision Ventures.

www.embedded-vision-emva.org

Projekt zu 3D-Gesichtserkennungssystemen

Das Centre for Machine Vision der University of the West of England (UWE Bristol) kooperiert mit dem britischen Unternehmen Customer Clever, um ein System zur 3D-Gesichtserkennung zu entwickeln, das erstmals auch gewerblich genutzt werden könnte. Das auf zwei Jahre angesetzte Projekt wird u.a. durch 170.000£ Förderung von der staatlichen Agentur Innovate UK mitfinanziert.

info.uwe.ac.uk

Anzeige
Automation Technology erweitert Produktionsstandort

Aufgrund des wachsenden Auftragsvolumens hat AT seinen Produktionsstandort in Bad Oldesloe erweitert. Die seit Mai offiziell in Betrieb befindliche Halle erweitert die Produktionsstätte um mehr als 1.000m² und ist mit einer Solaranlage ausgerüstet, die in Kombination mit neuen Energiespeichern zukünftig eine nahezu autarke Stromversorgung des gesamten Unternehmens erlaubt.

www.automationtechnology.de

Vertriebskooperation zwischen Tattile und Framos

Die beiden Unternehmen Tattile und Framos haben eine gemeinsame Zusammenarbeit bekannt gegeben. Die Vertriebskooperation umfasst die gesamte Palette an Hardware- und Softwareprodukten (Vision Controller, Industriekameras etc.) des Unternehmens Tattile, die zukünftig über das Framos-Vertriebsnetz in Europa und Nordamerika erhältlich sein wird.

www.tattile.com

Anzeige
Robotics & Automation 2017

Die neue ‚Robotics & Automation‘-Messe findet vom 11. bis 12. Oktober in der Arena MK in Milton Keynes, Großbritannien, statt. Die Messe richtet sich vor allem an Kunden aus den Bereichen Manufacturing, Automotive, Distribution, Warehouse, Einzelhandel sowie an pharmazeutische Kunden und beinhaltet neben Messe-Ständen auch Vorträge und Live-Applikationen.

www.roboticsandautomation.co.uk

Schneider-Kreuznach mit neuem Vertriebsleiter

Seit 1. Mai ist Dr. Raimund Lassak neuer Vertriebsleiter der Jos. Schneider Optische Werke GmbH. Der 52-jährige gelernte Ingenieur bringt weitreichende Erfahrungen aus verschiedenen Managementpositionen bei Technologie-Unternehmen mit sich. Er verantwortet bei Schneider-Kreuznach nun sämtliche globalen Vertriebsaktivitäten.

www.schneiderkreuznach.com

Anzeige