Anzeige

(Nicht länger) Ansichtssache

Spektral und selektiv geregelte LED-Lichtquellen

LEDs sind vom nahen UV bis ins Infrarot in einer großen spektralen Vielfalt verfügbar. Allerdings war bisher die spektrale Welt den Spezialisten vorbehalten, da das notwendige Equipment aufwendig und teuer ist. Dies ändert sich aktuell: Spektral selektiv steuerbare Lichtquellen werden kompakt, bezahlbar und massenmarkttauglich. Die spektralen Eigenschaften rücken somit immer stärker in den Fokus und ermöglichen völlig neue Anwendungen.

Bild 1 | Das Diagramm zeigt die spektrale Vielfalt einer Lichtquelle, deren Gesamtspektrum auf mehrere spektral unterschiedliche regelbare LEDs (weiß-rot-grün-blau) aufgeteilt ist – bei unterschiedlicher Bestromung der vier Farbkanäle. (Bild: Büchner Lichtsysteme GmbH)

Die Forschung kümmert sich beispielsweise verstärkt um die Wirkung verschiedener Spektralbereiche auf Psyche und Organismus. Andere Anwendungen entstehen in der medizinischen Diagnostik und Therapie, z.B. bei der Erkennung unterschiedlicher Gewebezusammensetzungen oder der Analyse von Hautgewebeveränderungen durch spektral angepasste Beleuchtung. Allerdings müssen bei den steigenden Anforderungen die Eigenschaften von LEDs viel genauer betrachtet werden als bisher. Abhängigkeiten, die bisher vernachlässigbar waren, spielen dort zunehmend eine wichtige Rolle. So altern LEDs, verlieren über die Zeit Helligkeit oder Temperatur, ändern ihre spektrale Signatur usw. Wenn beispielsweise bei der Begutachtung von weißem Zahnersatz feinste Farbnuancen erkannt werden sollen, spielt die spektrale Zusammensetzung der Beleuchtung eine zentrale Rolle und bei einer breit angelegten Hautscreening-Kampagne, die vergleichbare Ergebnisse über einen längeren Zeitraum gewährleisten soll, müssen die spektralen Eigenschaften der an verschiedenen Orten eingesetzten Beleuchtungen – unabhängig vom Einsatzort – möglichst vergleichbar und über einen langen Zeitraum stabil und reproduzierbar bleiben. Anfang 2013 hatte Büchner Lichtsysteme die Möglichkeit an einem geförderten Forschungsprojekt des Bundesministerium für Bildung und Forschung (BMBF) zu derartigen Aufgabenstellungen teilzunehmen. Das Verbundprojekt wurde vom Fraunhofer IIS initiiert und von mehreren Partnern aus Forschung und Industrie umgesetzt. Es besteht aus sechs Teilaufgaben und die Ergebnisse sollen preiswert umsetzbar, sowie für breite Anwendungen geeignet sein.

  • • Mehrkanalige, spektral steuerbare LED-Lichtquelle
  • • Mehrkanalige steuerbare Stromquelle
  • • Mehrkanaliger optischer Sensor
  • • Microprozessorsteuerung
  • • Softwaregestützte Spektralanalyse
  • • Mehrkanaliger Regelalgorithmus für geschlossenen Regelkreis

Sechs Bausteine des Projektes

Referenzleuchte mit zwei nebeneinander liegenden, homogen leuchtenden Flächen. Jede Fläche ist getrennt über vier Farbkanäle steuerbar. Damit lassen sich unterschiedliche Farben bzw. Spektren realisieren. (Bild: Büchner Lichtsysteme GmbH)

Referenzleuchte mit zwei nebeneinander liegenden, homogen leuchtenden Flächen. Jede Fläche ist getrennt über vier Farbkanäle steuerbar. Damit lassen sich unterschiedliche Farben bzw. Spektren realisieren. (Bild: Büchner Lichtsysteme GmbH)

Der erste Baustein ist eine Lichtquelle, deren Gesamtspektrum typischerweise auf mehrere spektral unterschiedliche LEDs aufgeteilt ist und die jeweils einzeln über einen eingeprägten Strom steuerbar sind. Das könnte beispielsweise eine 4-kanalige Zusammenstellung aus einem weißen, roten, grünen und blauen Kanal sein. Durch die unabhängige Bestromung der Kanäle kann eine große Vielfalt spektraler Signaturen erzeugt werden, beispielsweise ein höherwertiges weißes Spektrum mit deutlich besserem Farbwiedergabeindex oder ein bestimmter Spektralbereich wird bewusst hervorgehoben. Zudem können auch mehr Kanäle mit entsprechend größerer spektraler Vielfalt – aber auch entsprechend höherem Aufwand – kombiniert werden. Typischerweise werden pro Kanal mehrere verkettete LEDs mit einer Leistung zwischen 5 und 20W eingesetzt. In der praktischen Umsetzung können zusätzlich Linsen oder Mischer integriert werden, um das Licht den Vorgaben entsprechend zu lenken. Der zweite Baustein ist eine mehrkanalig steuerbare Stromquelle. Sie muss pro Kanal Ströme bis zu 1A bei 24VDC liefern können. Aufgrund der Messergebnisse wird eine Auflösung und Konstanz im Bereich von 10Bit (entsprechend 1mA) angestrebt, um stabile spektrale Verhältnisse zu erreichen. Da die Systeme ggf. auch zusammen mit Kameras eingesetzt werden, kann nicht mit niederfrequenter Pulsweitenmodulation (PWM) gearbeitet werden, sondern mit DC-Strom bei geringer Restwelligkeit. Der dritte Baustein ist ein optischer Sensor, der das emittierte Licht in mehreren Spektralbändern erfassen, verstärken und über eine Schnittstelle an den zentralen Prozessor übergeben soll. Dazu wurde ein Teilprojekt zur Entwicklung eines kostengünstigen Multikanalsensors auf der Basis von Plasmonenfiltern in Angriff genommen. Diese Technologie erlaubt die Realisierung von kostengünstigen und langzeitstabilen Filtern, sowie die Integration zusätzlicher Funktionen wie Vorverstärker, Multiplexer usw. Der vierte Baustein ist der zentrale Mikroprozessor zur Steuerung des gesamten Systems, der Messwerterfassung, Bedienung der Schnittstellen und Regelung. Der fünfte Baustein (Software) rekonstruiert aus den Messwerten der Filterkanäle ständig ein möglichst realitätsnahes Gesamtspektrum als Grundlage für die Regelung. Der sechste Baustein, der Regelalgorithmus, soll das Gesamtsystem in der letzten Ausbaustufe dazu befähigen, einmal eingestellte spektrale Signaturen unabhängig von äußeren Einflüssen (Temperatur, Alterung) konstant zu halten. Das Projekt läuft noch etwa ein Jahr und ist auf einem guten Weg. Es bleibt weiter spannend. Einkanalig geregelte Systeme auf Basis weißer LED’s sind bereits einsatzfähig und verfügbar.

Anzeige

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Die Basler AG übernimmt mit sofortiger Wirkung 100% der Anteile der Silicon Software GmbH. Die beiden Geschäftsführer Dr. Klaus-Henning Noffz (l.) und Dr. Ralf Lay (r.) werden zukünftig für die Silicon Software GmbH und die Basler AG tätig sein.

www.baslerweb.com

Anzeige

(Bild: Carl Zeiss AG)

Vom 14. bis 15. November findet in Oberkochen die Zeiss Xray Insights 2018 statt. Dabei geht es um die neuesten Entwicklungen aus den Bereichen CT und Röntgentechnologie zur Qualitätssicherung und Prozesskontrolle.

www.zeiss.de

Anzeige

Der Hersteller von 3D-Mess- und Bildverarbeitungslösungen Faro hat die Übernahme von Opto-Tech s.r.l. und seiner Tochtergesellschaft Open Technologies bekannt gegeben.

www.faro.com

Anzeige

Excelitas Technologies hat den Erwerb von Research Electro Optics aus Boulder, USA, abgeschlossen. Das Unternehmen ist auf die Serienfertigung von hochpräzisen Optikkomponenten und -baugruppen, optischer Dünnfilmbeschichtungen und HeNe-Hochleistungslasern spezialisiert.

www.excelitas.com

(Bild: InfraTec GmbH)

Infratec beteiligt sich mit sieben weiteren europäischen Partnern im Rahmen des EU-Forschungsprojektes Spirit an der Weiterentwicklung von Inspektionsrobotertechnologien der nächsten Generation. In dem auf drei Jahre angesetzten Projekt im Rahmen des EU-Programmes Horizont 2020 soll eine Systemlösung entstehen, die mit unterschiedlichster Prüftechnik ausgestattet werden kann. Infratec stellt dazu sein Technik-Know-how rund um die Thermografieprüfung zur Verfügung.

www.infratec.de

Bild: Vision Engineering Ltd.

Vision Engineering feiert diesen Monat sein 60-jähriges Firmenjubiläum. Der Hersteller von Systemen für die Fertigungskontrolle und berührungslose Messsysteme wurde 1958 von Rob Freeman in Großbritannien gegründet, der aufgrund seiner Erfahrungen als Werkzeugmacher im Jaguar-Rennstall das erste Endoskop für die Inspektion von Motorinnenteilen des Unternehmens entwickelte. Vision Engineering beschäftigt heute mehr als 220 Mitarbeiter.

www.visioneng.us

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige