Sensoren mit Adlerblick

Leistungsfähige Linsensysteme dank 3D-Druck

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut. Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der Universität Stuttgart haben nun im 3D-Druck Sensoren hergestellt, die das Adlerauge auf kleiner Fläche nachbilden.

Detailfoto der vier verschiedenen Linsen auf dem CMOS-Sensorchip. (Bild: Universität Stuttgart)

Der Grund für den sprichwörtlichen Adlerblick sind extrem viele Sehzellen in der zentralen Fovea, einer Einsenkung im Zentrum des Gelben Fleckes, dem Bereich des schärfsten Sehens. Zusätzlich haben Adler eine zweite Fovea am Augenrand, die für scharfe Sicht nach den Seiten sorgt. Ähnliches hätte der Autofahrer gerne für sein selbstfahrendes Fahrzeug: Nach vorne soll seine Kamera besonders scharf sehen, Hindernisse erkennen und den Abstand zum Vordermann einschätzen, trotzdem soll aber auch zur Seite hin das Sichtfeld im Blick gehalten werden. Bisher brauchte man dazu eine Reihe von Kameras und Sensoren rund um das Fahrzeug. Forscher der Universität Stuttgart haben jetzt einen Sensor entwickelt, der dieses Adlerauge auf kleiner Fläche nachbildet. Dabei wird mittels eines 3D-Druckers direkt auf einen hochauflösenden CMOS-Chip ein Satz von Mikro-Objektivlinsen gedruckt, die verschiedene Brennweiten und Sichtfelder haben. Die kleinste Linse hat eine Brennweite, die einem Weitwinkelobjektiv entspricht, dann folgen zwei Linsen mit eher mittlerem Sichtfeld, und die größte Linse hat eine lange Brennweite und ein kleines Sichtfeld, wie ein typisches Teleobjektiv. Der 3D-Drucker stellt die Linsen mithilfe der so genannten Zweiphotonen-Polymerisation passgenau direkt auf dem CMOS her. Alle vier Bilder, die die Linsen auf dem Chip erzeugen, werden gleichzeitig elektronisch ausgelesen und verarbeitet. Dabei setzt ein Computerprogramm das Bild so zusammen, dass im Zentrum das hochauflösende Bild des Teleobjektives dargestellt wird und ganz außen das Bild des Weitwinkelobjektivs. Die Forscher testeten die Kamera an verschiedenen Testobjekten und konnten die Verbesserung der Auflösung im Zentrum des so genannten ‚foveated imaging Systems‘ nachweisen. Da das gesamte Sensorsystem nur wenige Quadratmillimeter groß ist – die Linsen haben Durchmesser im Bereich von hundert bis wenigen hundert Mikrometern – könnten neben der Automobilindustrie auch neuartige Minidrohnen von der Technologie profitieren. Die Sensoren sind mit einem Minicomputer verbunden, der eine IP-Adresse hat und direkt über das Smartphone angesprochen und ausgelesen werden kann.

Sensoren mit Adlerblick
Detailfoto der vier verschiedenen Linsen auf dem CMOS-Sensorchip. (Bild: Universität Stuttgart)


Das könnte Sie auch interessieren

Partnerschaft Matrix Vision und Metrilus

Matrix Vision ist eine Partnerschaft mit dem Unternehmen Metrilus GmbH aus Erlangen eingegangen. Metrilus ist eines der ersten Unternehmen weltweit, das sich auf Komplettlösungen für Echtzeit-3D-Bildverarbeitungsanwendungen spezialisiert hat. In Verbindung mit der 6D-Perception Camera mbBlueSirius von Matrix Vision bietet Metrilus zukünftig Beratung, Entwicklung von Prototypen und Software-Lösungen an.

www.matrix-vision.com

Vervierfachtes geometrisches Auflösungsvermögen

MicroScan ermöglicht das Bildformat einer radiometrische Thermografiekamera mit gekühltem FPAPhotonen-Detektor zu vervierfachen. Für Modelle der High-End-Kameraserie ImageIR bedeutet dies, dass sich Aufnahmen mit bis zu 2.560×2.048 IR-Pixeln erstellen lassen. Hinter der Funktion verbirgt sich ein schnell rotierendes MicroScan-Rad, das in der Kamera integriert ist. Es sorgt dafür, dass pro Radumdrehung vier verschiedene Einzelaufnahmen entstehen, die zueinander jeweils um ein halbes Pixel lateral versetzt sind. Die Einzelaufnahmen werden in Echtzeit zu einem Thermogramm mit vierfachem Bildformat zusammengeführt.

www.InfraTec.de

Wellenfrontsensor für die Optikprüfung

Der Wellenfrontsensor SHSLab dient zur die Prüfung von Optiken, optischen Systemen und Lasersystemen. Das Messprinzip ermöglicht die Erfassung von Wellenfronten durch eine einzelne Messung, so dass er schnell und unempfindlich gegenüber externen Einflüssen ist. Ein Mikrolinsen-Array transformiert die lokalen Propagationsrichtungen der Lichtstrahlen in ein Feld von Fokuspunkten auf einer Kamera. Die Abweichung der Fokuspunkte von ihren Referenzpositionen wird berechnet und schließlich die Wellenfront durch numerische Integration.

www.optocraft.com

Kamera-Kompositgehäuse für Roboteranwendungen

Der Kamerakopf des Bildverarbeitungssystem Robot Inspector for Integrity Analysis (RIITTA) ist eine kompakte Einheit, die alle Einzelkomponenten wie Kamera, Objektiv, blitzbare LED-Beleuchtung und Ansteuerelektronik in einem Spezialgehäude vereint. Das leichte Kompositgehäuse ist IP65-geschützt und bietet Schutz vor Staub und Spritzwasser. Die Eigenschaften der verwendeten Materialien in Verbindung mit dem Design des Gehäuses vermeiden Trägheitsmomente, die vor allem bei Roboteranwendungen eine entscheidende Rolle spielen.

www.asentics.de

Anzeige
Neuer Geschäftsführer bei Omron Electronics

 

Zuvor war Kluger als Managing Director Europe und Vice President Business Development für Adept Technology, später für Omron Adept Technologies tätig. Außerdem ist er als ehrenamtliches Vorstandsmitglied im Fachverband Robotik des VDMA aktiv.

www.industrial.omron.eu

Anzeige
Jahresabschluss und Verä;nderungen bei Stemmer

Am 30. Juni hat der global tätige Bildverarbeiter Stemmer Imaging sein Geschäftsjahr 2016/2017 mit einem Umsatz von 88,7Mil.€ und einem währungsbereinigten Wachstum von 6% abgeschlossen. Der Abschluss stellt auch das Ende einer Ära dar.

www.stemmer-imaging.de

Anzeige