Laser-Radar für die robotisierte Inline-Karosserieprüfung

Tradition auf dem Prüfstand

Für Fahrzeug-Montagewerke gewinnt die fortlaufende Überwachung der Prozessqualität während des Fertigungsprozesses an Bedeutung. Die Lage von Bohrlöchern, Nuten, Bolzen und Schweißnähten muss gemessen und während des gesamten Prozesses verfolgt werden. Auch sind Spalt- und Bündigkeitsprüfungen an Türen, Hauben, Kofferraumdeckeln und anderen Scharnieren durchzuführen. Diese Prüfungen stellen sicher, dass die Fahrzeuge innerhalb der immer strengeren Toleranzvorgaben der Automobilhersteller gefertigt werden.
Mit der Einführung des berührungslosen Laser Radar-Systems wurde ein neuer Weg für die Karosserieprüfung eingeschlagen. Anders als bei einem Horizonalarm-KMG fügt sich das ultraschnell messende Laser-Radar nahtlos in die kurzen Zykluszeiten der heutigen Fertigung ein. Mit dem MV331/351 Laser-Radar können Oberflächen jetzt doppelt so schnell gescannt werden, wie beim Vorgängermodell. Durch neue Ausstattungsmerkmale, wie den integrierten Roboteradapter, abnehmbare Luftfilter und Überdruckbelüftung ist das System zudem noch besser für die Inspektion mit Robotern in der Fertigung geeignet.

Traditionelle Karosseriemessung auf dem Prüfstand

In der Vergangenheit wurden Karosseriemessungen in zwei Schritten durchgeführt: In der Montagestraße mit weniger genauen Sensoren, um den Prozess zu überwachen, und in einem KMG-Messraum, in dem große Horizontalarm-KMGs die Teile stichprobenartig offline geprüft haben. Die genaueren Messergebnisse des Messraums wurden dann mit den Messwerten der Sensoren von der Montagestraße abgeglichen. Obgleich KMGs sehr präzise Absolutmesswerte liefern, sind sie eher langsam und müssen in teuren Messlabors aufgestellt werden. Die Fahrzeuge müssen aus der Montagestraße entfernt, in den Messraum befördert, manuell aufgespannt und zum KMG ausgerichtet werden. Dann erst beginnt das KMG mit den Messungen, die ebenfalls zeitaufwändig sind. Wenn man die Einricht- und Messzeit betrachtet, kann ein KMG bestenfalls zwei Fahrzeuge pro Schicht prüfen, häufig wird jedoch nur ein Fahrzeug vermessen. Angesichts der Tatsache, dass mehr als 1.000 Fahrzeuge verschiedenen Typs pro Tag an einer einzigen Montagestraße gebaut werden können, ist diese Form der Qualitätskontrolle nicht besonders effektiv. Inline-Systeme messen in der Regel jedes Fahrzeug, benötigen jedoch möglicherweise mehr als 100 einzeln befestigte Sensoren, um die erforderlichen Merkmale zu messen. Obgleich diese Sensoren sehr schnell messen, sind sie schwierig zu installieren und zu warten. Außerdem liefern sie keine Messwerte direkt im Koordinatensystem des Fahrzeuges. Darüber hinaus sind die meisten heutigen Montagestraßen inzwischen ‚flexibel‘, d.h. für die Herstellung von mehr als nur einem einzigen Fahrzeugtyp ausgelegt. Moderne Inline-Inspektionssysteme sind daher zu roboterbasierten Lösungen übergegangen. Diese sind zwar flexibel, verlassen sich aber in puncto Positioniergenauigkeit auf den Roboter und sind daher in ihrer Gesamtgenauigkeit begrenzt. Bei diesen Systemen sind normalerweise mindestens vier Roboter im Einsatz. Am Robotergreifer ist ein Sensor befestigt, der für die Messung der zu prüfenden Merkmale verwendet wird. Dazu müssen mehrere hundert Sensorpositionen programmiert werden. Ihre Einrichtung und Wartung ist aufwendig, und kann zudem nicht mit der Genauigkeit eines KMG Schritt halten.

Scans mit 2.000 Punkten/sec

Heute stehen bei führenden OEMs sowohl in als auch neben der Montagestraße modernste Messstationen, die mit dem Laser-Radar arbeiten. Das System wird bereits seit vielen Jahren in der Luft- und Raumfahrt und im erneuerbaren Energiesektor eingesetzt. Das neue MV331/351 Laser Radar wurde speziell für die Karosseriemessung in der Industrieumgebung optimiert. Mit einer Geschwindigkeit von 2.000 Punkten/sec ermöglichen die ultraschnellen Scans des Gerätes schnelle Messungen an komplexen Merkmalen, einzelnen Abschnitten und Oberflächen. Das Laser Radar führt direkt im Fahrzeugkoordinatensystem automatisierte, berührungslose Präzisionsmessungen aus. Es verwendet einen fokussierten Laserstrahl, der durch präzise Horizontal- und Vertikalantriebe gesteuert wird. Für die Präzisionsmessungen wird nur ein Bruchteil des reflektierten Signals benötigt, sodass nahezu alle Materialien, Farben oder Oberflächenbeschaffenheiten, wie blanke Blechteile, beschichtete Rohkarossen oder lackierte Fahrzeuge, geprüft werden können. Die Messgenauigkeit und Wiederholpräzision ist mit den Messergebnissen eines herkömmlichen Horizontalarm-KMGs mit taktilem Messtaster vergleichbar, nur dass das Laser Radar deutlich schneller ist. Zwei parallel betriebene Systeme können in weniger als einer Stunde 700 Merkmale an einer Rohkarosse messen; ein herkömmliches KMG würde wahrscheinlich eine ganze Schicht dafür brauchen. Die Konfiguration einer Laser Radar-Messstation kann abhängig von den Anforderungen des OEM variieren. Normalerweise besteht sie aber aus einem oder mehreren Laser-Radar-Systemen, die von 6-Achsen-Industrierobotern gesteuert werden. Die Industrieroboter werden verwendet, um das System automatisch zu positionieren. So können auch Bereiche geprüft werden, die außerhalb der Sichtverbindung einer einzelnen Laser-Radar-Position liegen. Nachdem der Roboter das Messgerät neu positioniert, werden Ausrichtungspunkte am Fahrzeug oder auf der Werkzeugmaschine gemessen. Anders als bei bisherigen robotisierten Inline-Messsystemen ist damit gewährleistet, dass alle Messungen innerhalb des Fahrzeug-Koordinatensystems aufgenommen werden. Zudem ist sichergestellt, dass die Genauigkeit der Merkmalsmessung unabhängig von der Fähigkeit der Roboter ist, das Laser-Radar wiederholgenau zu positionieren. Das Gerät hat ein sphärisches Sichtfeld, d.h. große Bereiche des Fahrzeuges sind jederzeit sichtbar und zahlreiche Fahrzeugmerkmale können von einer einzigen Position aus gemessen werden. Ebenso wie bei einem KMG werden die Messabläufe mithilfe einer Messsoftware direkt aus dem CAD-Modell des Fahrzeuges vorprogrammiert. Nach der ersten Programmierung erfolgen Datenerfassung und Berichterstellung vollautomatisch. Außerdem können für jeden Fahrzeugtyp und Modell eigene Prüfprogramme geschrieben werden – und somit flexibel an geänderte Prüfvorhaben oder neue Fahrzeugtypen angepasst werden. Änderungen an den zu messenden Merkmalen oder die Einführung einer neuen Modellvariante erfolgen also ausschließlich über die Software, ohne dass physische Änderungen an der Konfiguration oder zusätzliche Hardware erforderlich sind.

Das könnte Sie auch interessieren

Vertriebskooperation zwischen Tattile und Framos

Die beiden Unternehmen Tattile und Framos haben eine gemeinsame Zusammenarbeit bekannt gegeben. Die Vertriebskooperation umfasst die gesamte Palette an Hardware- und Softwareprodukten (Vision Controller, Industriekameras etc.) des Unternehmens Tattile, die zukünftig über das Framos-Vertriebsnetz in Europa und Nordamerika erhältlich sein wird.

www.tattile.com

Robotics & Automation 2017

Die neue ‚Robotics & Automation‘-Messe findet vom 11. bis 12. Oktober in der Arena MK in Milton Keynes, Großbritannien, statt. Die Messe richtet sich vor allem an Kunden aus den Bereichen Manufacturing, Automotive, Distribution, Warehouse, Einzelhandel sowie an pharmazeutische Kunden und beinhaltet neben Messe-Ständen auch Vorträge und Live-Applikationen.

www.roboticsandautomation.co.uk

Anzeige
Schneider-Kreuznach mit neuem Vertriebsleiter

Seit 1. Mai ist Dr. Raimund Lassak neuer Vertriebsleiter der Jos. Schneider Optische Werke GmbH. Der 52-jährige gelernte Ingenieur bringt weitreichende Erfahrungen aus verschiedenen Managementpositionen bei Technologie-Unternehmen mit sich. Er verantwortet bei Schneider-Kreuznach nun sämtliche globalen Vertriebsaktivitäten.

www.schneiderkreuznach.com

VDMA: Deutsche Bildverarbeitung mit +9%

Die deutsche industrielle Bildverarbeitung hat im Jahr 2016 ein Umsatzplus von 9% gegenüber dem Vorjahr erwirtschaftet. Dabei stieg das Inlandsgeschäft um 3%, das Auslandsgeschäft um 14%. Laut Prognose des VDMA Robotik + Automation rechnet man für 2017 mit einem Umsatzplus von 10% auf dann 2,4Mrd. Euro.

ibv.vdma.org

Anzeige
3. Fachkonferenz ML4CPS

Die dritte Fachkonferenz ‚Maschinelles Lernen in der Produktion‘ findet vom 25. bis 26. Oktober in der SmartFactoryOWL in Lemgo statt. An beiden Konferenztagen geben verschiedene Vorträge und Networking-Veranstaltungen Einblick in das Thema ‚Machine Learning for Cyber Phisical Systems‘ (ML4PCS). Die Konferenz ist eine Kooperation zwischen dem Fraunhofer IOSB-INA und SV-Veranstaltungen.

www.sv-veranstaltungen.de

80% Zeitersparnis dank Deep learning

Das IBM Cognitive Visual Inspection (CVI) Systen macht über Ultra-HD-Kameras Videoaufnahmen von Werkstücken in der Fabrik. Die intelligente Lösung lernt dabei ständig dazu, basierend auf der Klassifikation der gefundenen Qualitätsmängel durch die sie bedienenden Mitarbeiter. Die integrierte künstliche Intelligenz Watson hilft Fehler schneller zu erkennen und zu klassifizieren. Tests ergaben, dass bei einem acht Tage dauernden Produktionszyklus bis zu 80% der ursprünglich für die Prüfung veranschlagten Zeit eingespart werden konnte.

www.ibm.com

Anzeige