Unbekannte Abhängigkeiten

Auflösung und Geschwindigkeit bei 3D-Lasertriangulationen

Die Faktoren Auflösung und Aufnahmegeschwindigkeit sind für die Planung von 3D-Bildverarbeitungslösungen von großer Bedeutung. Um den passenden 3D-Sensor für eine Applikation zu wählen, reicht ein bloßer Vergleich der Angaben zur Auflösung und Profilfrequenz jedoch nicht aus. Beim Einsatz des Lasertriangulationsverfahrens verfügen 3D-Sensoren im High-End-Bereich über eine interne Auswertung, deren Leistung sich ebenfalls auf die Genauigkeit und Schnelligkeit des Daten-outputs auswirkt.
Bei Triangulationsmessungen erfolgt die Aufnahme der 3D-Daten, indem ein Laser eine Lichtlinie auf das zu vermessene Objekt projiziert. Während das Prüfobjekt den Linienlaser durchwandert, nimmt ein winkelig positionierter 3D-Sensor die an der Objektoberfläche entlang verlaufende Lichtlinie auf. Aus den daraus resultierenden Lichtschnittaufnahmen wird ein 3D-Modell errechnet. Erfordert die Anwendung hohe Aufnahmegeschwindigkeiten und Bildauflösungen, wird die Übertragung der Sensorbilddaten an den Bildverarbeitungsrechner allerdings durch übliche Schnittstellen wie den GigE-Vision-Standard limitiert. Zwar existieren Alternativen (z.B. CoaXPress), aber diese erfordern meist weitere Komponenten wie Framegrabber, etc. und lassen die Anschaffungskosten steigen. Die Hersteller von Hochgeschwindigkeits-3D-Kameras umgehen diese Problematik, indem sie die Lagebestimmung der Laserlinie bereits intern auswerten und anstatt der Bilddaten nur die benötigten 3D-Daten an das weiterführende System ausgeben. Das Datenvolumen wird dadurch so stark reduziert, dass sich die Übertragung auch mit herkömmlichen Schnittstellenstandards umsetzen lässt. Für die interne Auswertung der Sensorpixel kennt die 3D-Bildverarbeitung verschiedene Algorithmen, die über unterschiedliche Leistungsmerkmale verfügen, die je nach Anforderung zu genaueren Messdaten verhelfen. So ist es bei transparenten Prüfobjekten z.B. von Vorteil, das Max-Verfahren (Maximum Intensity) einzusetzen, während die Schwerpunkt-Auswertung (COG: Center of Gravity) besonders bei reflektierenden Oberflächen wie Gussmetall seine Stärken ausspielt. Einen weiteren Unterschied erfährt die kamerainterne Auswertung durch die Subpixelfunktionalität. Diese ermöglicht eine weitere Aufteilung der einzelnen Sensorpixel, sodass sich der Laserlinienverlauf – je nach Kamera – noch mal um den Faktor 64 genauer bestimmen lässt. Die Wahl des richtigen 3D-Sensors hängt somit von vielen Faktoren ab. Ein Beispiel soll deshalb aufzeigen, was in Hinblick auf Auflösung und Geschwindigkeit zu beachten ist: Zunächst gilt es die erforderliche Auflösung herauszufinden. Hierzu benötigt man zuerst die Angaben zur Breite und Höhe des Messbereichs und der Größe des Prüfkriteriums. Generell kann man als groben Richtwert ca. zehn Pixel veranschlagen, um einen Defekt an einem Prüfobjekt zu erkennen. Wenn also ein lateraler Messbereich von 20mm auf Defekte mit einem Durchmesser von 0,1mm geprüft werden soll, so müsste der 3D-Sensor mindestens eine laterale Auflösung mit 2.000 Pixeln zur Fehlererkennung bereitstellen [= (20mm/ (0,1mm/10Pixel)]. Zur Bestimmung der vertikalen Sensorfeldgröße müssen die Höhe des Messbereichs und die zu erkennende Defektgröße ebenfalls bekannt sein. Geht man zur Defekterkennung in der Höhe von einer Größe von 0,2mm aus und einem gesamten Scanbereich von 10mm, erhält man eine Pixelauflösung von 500 Pixeln [= (10mm/(0,2mm/10Pixel)].

Profilfrequenz abhängig vom Auswertungsalgorithmus

Die Höhenauflösung hat einen großen Einfluss auf die Profilgeschwindigkeit, da man anhand dieses Wertes ein ROI (Region of Interest) im Sensorfeld setzen kann, welches das Auslesen des Sensors auf das definierte Feld beschränkt. Auf diese Weise reduziert sich die Zeit des Auslesens und die Bilddaten lassen sich schneller berechnen bzw. ausgeben. Um zu erfahren, was für Profilraten sich bei welcher AOI-Größe ausgeben lassen, stellen die Kamerahersteller entsprechende Tabellen bereit. Wie jedoch eingangs erwähnt, ist ein praxisrelevanter Vergleich dieser Werte nur unter der Berücksichtigung der verschiedenen Laserlinienberechnungen möglich. So unterstützen die 3D-Sensoren von Hersteller zu Hersteller unterschiedliche Subpixelauswertungen und auch deren Algorithmen wirken sich sehr unterschiedlich auf die Präzision und Geschwindigkeit aus. Für das oben aufgeführte Beispiel wird ein Sensor benötigt, der mindestens über eine Auflösung mit 2.000×500 Pixeln verfügt. Vergleicht man nun 3D-Sensoren, die für eine solche Messaufgabe in Frage kommen, wird man zunächst große Unterschiede feststellen. So gibt es Hochgeschwindigkeits-3D-Kameras die eine solche Messaufgabe mit einer Profilgeschwindigkeit von über 5kHz durchführen. Bei einer AOI-Höhe von 500 Zeilen stellt diese Messgeschwindigkeit theoretisch auch kein Problem dar. In der Praxis kommt für die interne Laserlinienauswertung jedoch meist der FIR-Peak- oder COG-Algorithmus zum Einsatz, da diese über eine sehr genaue Auswertung verfügen. In diesem Fall würde die Profilrate allerdings um ein Vielfaches gesenkt werden, sodass die tatsächliche Geschwindigkeit am Ende bei ca. 0,8kHz liegt. Eine Besonderheit stellen diesbezüglich die Hochgeschwindigkeits-3D-Sensoren der CX-Serie dar, denn deren Auswertungsalgorithmen arbeiten stets mit der maximalen Sensorauslesegeschwindigkeit. Die Algorithmuswahl nimmt bei diesen 3D-Sensoren deshalb keinen Einfluss auf die Profilfrequenz. Ein 3D-Sensor, der sich für das oben genannte Beispiel zum Vergleich anbietet, wäre das Modell C2-2040HS-GigE. Auf den ersten Blick liefert der Sensor bei 500 Zeilen zwar eine ähnliche Profilrate von 0,7kHz, jedoch verfügen die Sensoren zusätzlich über eine Subpixelgenauigkeit von einem Pixel. Aus diesem Grund benötigt er für die gleiche Auflösung tatsächlich nur acht Zeilen, und führt die Messung mit einer Profilgeschwindigkeit von 25kHz aus.

Anzeige

Das könnte Sie auch interessieren

Die neue Generation der prismabasierten Multi-CMOS-Sensor Flächenkameraserie Apex hebt die Farbabbildung auf eine neues Niveau. Mit einem optimierten dichroitischen Prisma und der neuen Sony Pregius CMOS Generation mit Global Shutter Technologie ist die Kameraserie auf dem modernsten Stand der Farbbildgebung.

Anzeige

www.jai.com

Anzeige

Die Messsoftware Metrolog 3D erfasst und analysiert systemübergreifend Daten und visualisiert anschließend alle Arten von 3D-Messungen. Die neue Version X4 wurde entwickelt, um mit einer einzigen Softwareplattform mit jeder Art von System und Technologie der Messtechnik arbeiten zu können.‣ weiterlesen

www.metrologicgroup.fr

Für einige ist künstliche Intelligenz (KI) ein Segen, für andere ein Fluch. Wo Sie sich dabei einordnen, hängt in hohem Maß davon ab, ob Sie der Angst ausgesetzt sind, in Kürze Ihren Job an einen modernen C-3PO zu verlieren. Trotzdem müssen wir alle der Realität ins Auge blicken – eine Realität, die keine menschliche Interaktion erfordert.‣ weiterlesen

www.teledynedalsa.com

Anzeige

Das ADLVIS-1700-System unterstützt zwei CXP-6-Ports (1.250MB/s) oder einen vierkanaligen Camera Link-Port (bis zu 680MB/s). Mit bis zu vier wechselbaren 2,5″ SATA 6Gb/s SSDs und RAID-0/1/5/10-Support kombiniert es einen IPC mit wechselbaren CXP- oder CL-Bildverarbeitungskarten und einem großen und schnellen Massenspeicher. Dadurch werden hohe Schreib- und Lesegeschwindigkeiten erzielt und die einfache Entnahme der Laufwerke im Betrieb ermöglicht. Das Schnittstellenangebot umfasst in der Standard-Ausstattung zwei Gigabit-LAN-, zwei USB2.0- und zwei COM-Ports. Über den internen PCIe/104-Bus bestehen Erweiterungsmöglichkeiten, u.a. vier Gigabit-LANs, vier USB3.0-Ports und vier mPCIe-Carrier.

www.adl-europe.com

Anzeige

Die für den Dauereinsatz geeigneten IR-Linienkameras Pyroline ermöglichen Messgeschwindigkeiten bis zu 2.000 Linien/sec bei simultaner Messung aller Messpunkte und dies für Messtemperaturen von 600 bis 3.000°C. Neben der Standardvariante Pyroline 512N mit 256 Zeilen/sec gibt es auch die Variante HS 512N mit 2.000 Zeilen/sec. Als Kameragehäuse werden zwei Versionen angeboten. Bei der Variante compact+ kommt ein IP54-Aluminiumgehäuse zum Einsatz. In der Version protection befindet sich die Kamera in einem IP65-Industrieschutzgehäuse aus Edelstahl mit Luftspülung, Wasserkühlung und Schutzfenster, so dass Umgebungstemperaturen von bis zu 150°C möglich sind.

www.dias-infrared.de

Stromsparend, kompakt und vielseitig erweiterbar – drei Eigenschaften, die den Embedded Box PC Tank-870e-H110 ausmachen. Der IPC überzeugt mit performanten Quad C Intel Quad Core i7- oder i5-Prozessoren (max. 32GB DDR4 SO-DIMM Arbeitsspeicher) und ist dank max. 35W TDP stromsparend. Eingebettet in ein lüfterloses Aluminiumgehäuse mit den Maßen 132x255x190mm ist er standardmäßig mit drei Erweiterungsslots ausgestattet. Große Erweiterungsvielfalt bieten drei Backplane Varianten mit PCIe x4, PCIe x16, PCI und zwei Fullsize PCIe Mini Card Slots. Die an der Front herausgeführten I/O- Schnittstellen umfassen vier USB3.0, zwei isolierte RS-232/422/485, zwei RJ-45 GbE LAN und Audio.

www.icp-deutschland.de

Anzeige