Anzeige
Anzeige

Vereinfachte Synchronisierung

Mithilfe von IEEE1588 wird die Kamera zum Master

Bislang werden die in Kameras eingebauten Taktgeber beim Einschalten der Energiequelle zurückgesetzt, und die Zeitstempel beginnen asynchron aufwärts zu zählen. Bei vernetzten Kameras geht die Synchronisierung dieser Zeitstempel im Laufe der Zeit – infolge von Abweichungen der Taktgeberfrequenzen – nach und nach verloren. Das bedeutet, dass vom Kamerasystem ausgegebene Informationen unzuverlässig sein können.
Bei IEEE1588 handelt es sich um ein vom Precision Time Protocol (PTP) gefordertes Protokoll, das für Ethernet verbundene Geräte einsetzt. Es sorgt für eine extrem genaue zeitliche Synchronisierung von Kameras, die über ein Ethernet-Kabel mit einer Grand-Master-Standardzeituhr verbunden sind. Kameras, die IEEE1588 unterstützen, tauschen in vorher festgelegten Zyklen synchronisierte Meldungen mit dem Grand Master aus, wobei der interne Zähler in Übereinstimmung mit der Zeitstempelinformation zum Sende- und Empfangszeitpunkt jeweils neu kalibriert wird. Der IEEE1588-Zeitstempel ist ein Epochen-Zeitzähler, bei dem der 1. Januar 1970, 00:00 Uhr, als [0] gesetzt ist, und bietet eine Auflösung von 1ns (1GHz). Im Gegensatz zu den Mechanismen des Phasenregelkreises (PLL) werden freilaufende Zähler jedes Mal aktualisiert, wenn eine Synchronisierungsmeldung ausgetauscht wird. Eine Verkürzung des Zyklusintervalls mit dem Grand Master verbessert die Genauigkeit weiter.

Trigger und GPO-Links

Vor IEEE1588 war es unmöglich, eine präzise gleichzeitige Bilderfassung in einem Mehrkamerasystem zu gewährleisten. Die Vorgängergenerationen der GigE-Vision-Kameras (bis Version GigE v1.2) enthielten Aktionsbefehle, die so entwickelt waren, dass sie gleichzeitig mit einem einzigen Befehl für mehrere Kameras arbeiteten. Allerdings gab es dabei einige nicht eindeutige Elemente, z.B. die Verzögerungen bei der Ausbreitung im Netzwerk oder in der Firmware-Verarbeitung. Um dies zu beheben, ermöglichte eine Kombination von IEEE1588 und dem Aktionsbefehl ab GigE Vision 2.0 jeder einzelnen Kamera die Vorgabe eines Zeitraumes zur Aktionsausführung. Die Kamera XCG-CG wurde mit einer Funktion ausgestattet, welche die Belichtung in Synchronisation mit dieser absoluten Zeit beginnt, einschließlich Funktionen, die als IEEE1588-Applikationen definiert wurden und die mit GigE Vision konform sind. Diese Funktionen werden als Scheduled Action Commands bezeichnet. Die Aufgabe der Befehle ist die Zeit der Synchronisierung für Software-Trigger und IEEE1588 vorzugeben, z.B. lässt sich die Synchronisation auf ‚einmal pro Sekunde‘ einstellen, wonach sämtliche Kameras in einem Netzwerk in diesem Intervall mit dem Grand Master synchronisiert werden. Durch eine Reduzierung des Intervalls zwischen der Synchronisierung kann sie ausgeführt werden, solang die Zeitdiskrepanzen noch gering sind, was zu einer Minimierung des Jitter führt. Was den Freilauf betrifft, wird der Zeittakt bis zum Start der Kamerabelichtung mit der Zeit abgestimmt, die über den Grand Master synchronisiert wurde. Obwohl diese Vorgehensweise durch die Netzwerkumgebung beeinflusst wird, kann die Synchronsteuerung der Belichtung im Idealfall innerhalb von 1µs durchgeführt werden. Im Allgemeinen müssen getrennte Geräte vorgesehen werden, die als Grand Master fungieren – entweder auf dem Markt erhältliche Spezialgeräte oder ein PC mit einem Linux-OS, auf dem die Grand-Master-Software läuft. Jedoch werden bereits Untersuchungen über die Aufnahme einer IEEE1588-Master-Funktion in die XCG-CG-Familie im Rahmen eines künftigen Upgrades vorgenommen. Auf diese Weise würde die Kamera selbst Master werden und die Bereitstellung eines getrennten Grand-Master-Zeittakt würde entfallen. So ließe sich der Mechanismus zur Synchronisation zwischen Kameras bzw. Kameras und Peripheriegeräten vereinfachen.

Vorteile und Einsatzszenarien

Post-Event-Analyse: Durch eine Bestückung von GigE-Vision-Kameras mit IEEE1588 sind diese in der Lage, ihre Zeiteinstellung mit der Grand Master Clock zu synchronisieren. Die mit den Bildpaketen verbundenen Zeitstempel können die absolute Uhrzeit anzeigen. Somit wäre bei intelligenten Verkehrssystemen die noch genauere Erfassung von Fahrzeugen möglich, welche die Höchstgeschwindigkeit überschreiten, ohne dass man Radar dazu braucht. Mithilfe der Zeitstempel, die man von zwei verschiedenen Punkten erhält, lässt sich entscheiden, ob Fahrzeuge das Tempolimit überschreiten oder nicht. Zudem erhält man die genaue Uhrzeit von Bildern, die an beiden Punkten aufgenommen wurden, was die Geschwindigkeitsanalyse vereinfacht. IEEE1588-Zeitstempel werden sich – auch für Industrieroboter sowie alle Arten von Prüfeinrichtungen – als besonders effektiv erweisen. Dadurch, dass man Bilder, welche die Prüfungsvorgänge und die Ergebnisse zeigen, mit der absoluten Uhrzeit versieht, lassen sich die betreffenden Gegenstände leichter identifizieren.

Verbesserte Zuverlässigkeit des Systems: Eines der Probleme bei der Installation von Bildverarbeitungssystemen für Montage-/Prüfroboter und Geräte ist das Layout der Verdrahtung. Kabel können Verschleiß unterliegen und sich auflösen. Die Wahrscheinlichkeit, dass dies passiert, nimmt mit der Anzahl von Kameras in einem System zu, d.h. die Anzahl der Kabel muss ebenfalls erhöht werden, wenn jede Kamera synchronisiert werden soll. Die XCG-CG-Serie ermöglicht die Synchronisierung mehrerer Kameras mit IEEE1588 und Scheduled Action Commands. Sie unterstützen zudem PoE (Power over Ethernet), wodurch lediglich ein Kabel zur Belichtungssynchronisation, Bildausgabe und Energieversorgung benötigt wird.

Einschränkung der Taktung: Ein Problem bei IEEE1588-konformen Systemen ist die Verzögerung zwischen Bilderfassung und dem Zeitpunkt, zu dem Peripheriegeräte, die IEEE1588 nicht unterstützen, in Aktion treten. Daher plant Sony, die Kamerafamilie mit dem universellen Ausgang GPO (General Purpose Output) zu verbinden, um den Betrieb derartiger Peripheriegeräte auf Basis von Zeitsynchronität zu ermöglichen. Dadurch wäre die Verbindung des GPO der Kamera mit Robotern, während des erwähnten Zeitraumes, möglich, zu dem die Kamera Bilder erfasst, und bis der Roboter beginnt die Arbeit aufzunehmen, wodurch die Synchronisierung von Bilderfassung und Roboteraktionen erfolgt. Ein anderes Beispiel entstammt der Flascheninspektion. Dabei müssen mehrere Kameras synchronisiert werden, wobei die Prüfgegenstände mit einer vorgegebenen Geschwindigkeit transportiert werden. Bei Verwendung dieser Methode ergibt sich eine hohe Übereinstimmung mit Systemen, welche die genauen Synchronisationsfähigkeiten von IEEE1588 einsetzen.

Anzeige
Vereinfachte Synchronisierung
Die XCG-CG-Kameraserie ermöglicht die Synchronisierung mehrerer Kameras mit IEEE1588 und Scheduled Action Commands. (Bild: Sony)


Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Das Sensorunternehmen plant eine neue Firmenzentrale, die auf zwei Etagen eine Nutzfläche von rund 6.000m² bieten soll. Alle Mitarbeiter der lokalen Niederlassungen sollen so zukünftig in der Zentrale mit Sitz im Märkischen Gewerbepark Rosmart Platz finden.

www.technikredaktion.de

Anzeige

Hexagon hat den Softwareanbieter Spring Technologies übernommen. Das französische Unternehmen entwickelt seit 30 Jahren CNC-Lösungen für Werkzeugmaschinen rund um das Kernportfolio NCSIMUL, das weltweit bei OEMs und Zulieferern verwendet wird, um den Produktionsprozess zu beschleunigen. Zukünftig wird Spring der Hexagon Manufacturing Intelligence Division im Bereich der CAD/CADM- und Produktionssoftware angehören, die derzeit von der Marke Vero Software geführt wird.

hexagon.com

Anzeige

Im ersten Quartal 2018 ist der Umsatz mit Komponenten und Systemen für die industrielle Bildverarbeitung in Nordamerika gegenüber dem Vorjahr um 19% auf 709Mio.US$ gestiegen – ein neuer Rekordwert beim Quartalsumsatz.

www.visiononline.org

Anzeige

Die OPC-UA-Arbeitsgruppen Bildverarbeitung und Robotik im VDMA haben auf der Automatica OPC UA Companion Specifications für Robotik und Industrielle Bildverarbeitung veröffentlicht. Die Spezifikation OPC UA Vision bietet ein generisches Modell für alle Bildverarbeitungssysteme – von einfachen Vision-Sensoren bis zu komplexen Systemen.

www.vdma.org

Anzeige

Die beiden österreichischen Forschungsunternehmen Austrian institute of Technology und Profactor haben bekannt gegeben, zukünftig in Hinblick auf die Trendthemen Digitalisierung und Industrie 4.0 ihre Kräfte zu bündeln. Bestehen in Hinblick auf das Lösungsspektrum und die Kundenstruktur bereits Synergien, soll eine langfristige Zusammenarbeit erlauben, dieses Potenzial noch zu erhöhen. Dadurch soll das Forschungsportfolio noch intensiver an den Bedürfnissen der Industrie ausgerichtet werden.

www.ait.ac.at

Anwender können die berührungslose Wärmebildgebungsfunktion des Industrie-Wärmebild-Multimeter DM285 nutzen, um überhitzte Systemkomponenten schnell ausfindig zu machen und anschließend mithilfe seiner DMM-Testfunktionen die Fehlerursache zu erkennen und zu beheben. Mit seinen 18 Funktionen und seiner Wärmebildauflösung von 160×120 Pixeln misst es Temperaturen von bis zu 400°C, speichert die Daten für zehn Sätze von 40.000 Skalarmessungen und 100 Bilder und bietet eine Abruffunktion, die eine Datensichtung am Einsatzort ermöglicht. Es verfügt über eine integrierte Arbeitsleuchte und bietet flexible Akku-/Batterieoptionen.

www.flir.com

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige