Anzeige
Anzeige

Weg mit dem Flaschenhals

PCI-Express-Kamera mit 7GB/s effektiver Bandbreite

PCIe ist derzeit die einzige standardisierte Kameraschnittstelle mit ausreichend Bandbreite für die aktuell schnellsten industriellen Bildsensoren. Der PC-Bus eignet sich dank standardisierter Verkabelungen, Adapterkarten und Softwaretreiber auch als Kameraschnittstelle mit 7GB/s effektiver Bandbreite.

 Dank der PCIe Gen3 x8 Schnittstelle bietet die xiB-Kamera-Plattform auf Basis des CMV12000-Sensors 330fps mit 12MP-Aufl?sung. (Bild: Ximea GmbH)

Dank der PCIe Gen3 x8 Schnittstelle bietet die xiB-Kamera-Plattform auf Basis des CMV12000-Sensors 330fps mit 12MP-Auflösung. (Bild: Ximea GmbH)

I-Sensor-Hersteller wie Cmosis, ON Semiconductor, Luxima oder Fairchild Imaging, liefern sich seit geraumer Zeit ein Wettrennen um immer höhere Sensorauflösungen und Bildraten. Wo bisher mehrere 1 bis 2MP-Sensoren notwendig waren, um z.B. Display-Panels zu inspizieren, reicht nun ein 12MP-Sensor. Darüber hinaus machen Auflösungen von 50MP oder Bildraten von knapp 10.000fps bestimmte Anwendungen überhaupt erst möglich. So hilfreich allerdings viele Megapixel und hunderte oder gar tausende Bilder pro Sekunde auch sein mögen, sie erzeugen ein Problem: Eine Unmenge von Daten in sehr kurzer Zeit. Der 12MP-Sensor CMV12000 von Cmosis liefert bis zu 300fps, was bei 10bit/Pixel eine Datenrate von mehr als 41,5Gbit/s generiert. Der Lux13HS von Luxima nimmt bei einer auf 1.184×384 Pixel reduzierten Auflösung 9.000fps auf. Auch besonders rauscharme und lichtsensitive Sensoren mit Scientific CMOS (sCMOS) Technologie benötigen hohe Bandbreiten, da sie ihre Bilddaten gleichzeitig über einen Low-Gain- und einen High-Gain-Kanal ausgeben. Entwickler von Visionsystemen wünschen sich jedoch auch bei diesen hohen Datenraten eine echtzeitfähige Übertragung, Auswertung und ggf. Speicherung der Daten. Allerdings erreicht z.B. CoaXPress nur rund 21Gbit/s an effektiver Bandbreite, zu wenig für die meisten schnellen Sensoren. Der für 2019 angekündigte Nachfolger CoaXPress v2 soll den doppelten Datendurchsatz erlauben und könnte dann zumindest die meisten der heute verfügbaren Sensoren abdecken.

Hohe Bildraten mit Boxed-Kameras

Aufgrund der limitierten Bandbreite halfen sich einige Nutzer bisher mit sogenannten Boxed-Kameras, die Bilder mit sehr hoher Geschwindigkeit aufnehmen, in einem internen Puffer zwischenspeichern und erst dann an einen PC zur Weiterbearbeitung ausgeben. Je nach Kamera sind jedoch nur Aufnahmen von wenigen Sekunden möglich. Dieser Ansatz erforderte eine exakte Synchronisierung der Kameras mit dem aufzunehmenden Vorgang und eignete sich nur für kurze Abläufe, wie z.B. bei Crash-Tests. Bei der Untersuchung von chemischen Prozessen, wie z.B. Explosionen, ist u.U. der exakte Moment des zu beobachtenden Vorgangs nicht vorherzusehen, was eine Synchronisierung mit den Kameras verhindert. Insbesondere bei längeren Abläufen, wie der Entwicklung von Gasen, dem Mischen von Strömungen oder in der Particle Imaging Velocimetry ist die Aufnahmezeit von Boxed-Kameras nicht ausreichend. Zudem kann die Auswertung nicht in Echtzeit erfolgen, da die Entwickler die Daten erst aus der Kamera auslesen und auf einen Rechner übertragen müssen.

PCI-Express-Bus (PCIe)

 Diagramm der Aufl?sungen und raten von Hochleistungssensoren und Kameraschnittstellen (Bild: Vision Markets)

Diagramm der Auflösungen und raten von
Hochleistungssensoren und Kameraschnittstellen (Bild: Vision Markets)

Ob Camera Link, CoaXPress, oder USB 3.0: All diese Schnittstellen bilden lediglich eine Zwischenschicht zwischen dem Bild-Sensor in der Kamera und dem PCI-Express-Bus (PCIe) im PC. Entwickler kamen nun auf die Idee, diese Zwischenschicht zu eliminieren und die Daten von der Kamera direkt auf den hoch-performanten PCIe-Bus zu übertragen. Mittlerweile ist die dritte Generation des PCIe- Standards in der Breite ausgerollt und bietet bei acht aggregierten Lanes (PCIe Gen3 x8) eine nominale Bandbreite von 64Gbit/s. Der PCIe-Bus ist tiefgehend in die Prozessor- und Busarchitekturen von PC-Systemen integriert. So kümmern sich eigene Scatter/Gather-Controller mit DMA (Direct Memory Access) um das Bus-Management und entlasten die CPU. Der PCIe-Bus-Controller kann die ankommenden Daten direkt in den Arbeitsspeicher des PCs, an die GPU oder auch an weitere dedizierte PCIe Schnittstellenkarten zur Bildverarbeitung mittels FPGAs oder DSPs übertragen. Dadurch entsteht nur eine minimale, deterministische Latenz zwischen Bildaufnahme und Verarbeitung, da die Daten nicht erst für zwischengeschaltete Schnittstellenprotokolle umgewandelt werden müssen. Sämtliche heute verfügbaren Image Sensoren lassen sich mit dieser Bandbreite voll ausreizen. Zur Speicherung der Bilddaten über mehrere Stunden hinweg sind bereits SSD-Raid Lösungen erfolgreich getestet worden und im Einsatz. Darüber hinaus eignet sich PCIe auch für die aggregierte Übertragung der Bilddaten mehrerer Sensoren über ein einziges Kabel, z.B. für 360° Rundumsicht-Kameras oder optische 3D-Erfassungs- und Virtual-Reality-Systeme. Dank GenICam- und GenTL-kompatiblen Treibern ist die Einbindung von PCIe Kameras mit allen verbreiteten Bildverarbeitungsbibliotheken möglich. Adapterkarten führen den PCIe-Port des PC-Motherboards nach außen. Die Karten sind von verschiedenen Herstellern wie Samtec, One Stop Systems und Dolphin ICS verfügbar. Klassische Framegrabber sind somit überflüssig, da die benötigte Logik bereits in die Kamera integriert ist. Die Verkabelung basiert auf Standards wie iPass- und MTP-Steckern für Glasfaser und bis zu 100m langen Leitungen bei voller Bandbreite. Diese sind auch in Versionen zertifiziert nach dem MIL-Standard erhältlich.

Anzeige

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Die Smart PLC Unit ist eine Industriesteuerung zur Messwertverrechnung für die Laser-Scanner scanControl Smart und Gapcontrol. Die ermittelten Messwerte werden über die Unit verrechnet, angezeigt, protokolliert und können an übergeordnete Steuerungen weitergegeben werden. Dafür stehen analoge und digitale Schnittstellen zur Verfügung. Bis zu acht Laserscanner lassen sich an anschließen. Dies ist bei vielen Anwendungen, wie beispielsweise Konturvermessungen an großen Bauteilen notwendig.

www.micro-epsilon.de

Anzeige

Die Maxshot 3D-Fotogrammetrie-Kamera verbindet eine einfache Bedienung und Genauigkeit mit umfangreichen Größenmessprojekten. Sie kann als einzelnes Messgerät aber auch in Kombination mit Creaforms 3D-Scannern und tragbaren KMMs verwendet werden. Das Gerät ist 40% präziser als der Vorgänger und hat eine volumetrische Genauigkeit von bis zu 0,015mm/m. Eine visuelle Projektion mit Echtzeit-Feedback direkt auf dem Teil, leitet den Nutzer zu der richtigen Position für die Aufnahme.

www.creaform3d.com

Anzeige

Das Interferometer µPhase basiert auf dem Twyman-Green-Prinzip und vermisst hochpräzise Abweichungen in Planität und Sphärizität, mit einer Genauigkeit bis zu 0.01µm. Die berührungsfreie Messung und Auswertung erfolgt dabei großflächig innerhalb von Sekunden. ‣ weiterlesen

Anzeige

www.trioptics.com

Anzeige

Das integrierte Messsystem Duo Vario bietet zwei Messverfahren: das Konfokale und die Fokusvariation, für eine Oberflächenanalyse von Rauheit sowie Konturmessungen. Mit dem konfokalen Verfahren können stark reflektierende Oberflächen rückführbar auf herstellerunabhängige Raunormale gemessen werden. Mit dem neuen Gerät ist dies nun auch mit einem größeren Bildfeld und mit einer höheren lateralen Auflösung möglich. Das Fokusvariationsverfahren ist vor allem für die Messung von Formen und Konturen vorteilhaft. Dabei beträgt der Akzeptanzwinkel über 85°.

www.confovis.com

Anzeige

Lapp ergänzt sein Etherline-Portfolio um die erste torsionsfähige und Profinet-konforme Cat. 7 Hochgeschwindigkeitsleitung der Welt. Die Etherline Torsion Cat 7 erreicht Datenraten nach Cat. 7, also 10GBit/s im Frequenzband bis 600MHz. Sie lässt sich auf einer Länge von 1m um 180° in beide Richtungen tordieren und das mindestens fünf Millionen Mal. Das Kabel kommt ohne Füller aus, die Adern werden nur von einem Trennkreuz aus Polyethylen am Platz gehalten, was die Konfektion erleichtert.

www.lappkabel.de

Anzeige

Die QIPAK 6.1 Software für das Messsystem Quick Image wartet mit einer Stitching-Funktion für einen großen Messbereich auf. Ein oder mehrere Werkstücke lassen sich mit dem System innerhalb von Sekunden wiederholbar messen. Dank der Software bedarf es nur eines einzigen Mausklicks, um das Werkstück im Sichtfeld automatisch zu erkennen und die Messung zu starten. Im Fall von Werkstücken, die größer ausfallen als der Bildbereich, erfasst das System bei der Messtischbewegung mehrere Bilder und fügt die einzelnen Aufnahmen zusammen.

www.mitutoyo.de

Anzeige

Speziell für die Anwendung in der Automobilindustrie wurden die Planflächenprüfsysteme Gageline IPS F100 3D und IPS F200 3D entwickelt, die dank Kamera- und Beleuchtungstechnik, einer adaptiven, dynamischen Maskierung und hoher Auflösung eine 100%-Prüfung von Planflächen in Linientaktzeit sicher durchführen. Mit der Multi-Bilderfassung können nicht nur wahre Defekte und Trockenränder des vorgelagerten Waschprozesses unterschieden werden, sondern es werden auch Angaben zu Höhendaten ermittelt. Der Prüfbereich ist sowohl in Breite und Länge nahezu unbegrenzt

www.jenoptik.de

Anzeige

Der europäische Bildverarbeitungsverband EMVA plant erstmals vom 12. bis 13. Oktober zusammen mit der Messe Stuttgart die Ausrichtung der Embedded Vision Europe (EVE) Conference in Stuttgart. Über die Ziele und Inhalte der Veranstaltung sprach inVISION mit Gabriele Jansen, Mitglied im ehrenamtlichen Vorstand der EMVA und Geschäftsführerin von Vision Ventures. ‣ weiterlesen

Anzeige

www.embedded-vision-emva.org

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige