Anzeige

Lichtfeldkameras

Trifft Licht auf einen Punkt an der Oberfläche eines Objektes, so wird es in verschiedene Raumrichtungen reflektiert und erzeugt damit ein Lichtfeld. Lichtfeldkameras (auch plenoptische Kameras) liefern neben 2D-Bildinformationen auch die Richtung der an der Abbildung beteiligten Lichtstrahlen.

Funktionsweise einer 3D-Lichtfeldkamera (Bild: Raytrix GmbH)

Funktionsweise einer 3D-Lichtfeldkamera (Bild: Raytrix GmbH)

An der optischen Abbildung eines Objektpunktes sind immer Lichtstrahlen aus verschiedenen Richtungen beteiligt. Damit man die Richtungsinformationen des Lichtfeldes nutzen kann, muss die Abbildung des Objektpunktes in vielen Ansichten vorliegen. Realisiert wird dies durch ein Array von Kameras (volle Ortsauflösung, aber hardwareaufwändig) oder ein Mikrolinsen-Array vor dem Bildsensor (weniger Kamerahardware, jedoch verringerte Ortsauflösung). Für Lichtfeldkameras werden aktuell Aufbauten mit Mikrolinsen-Arrays mit verschiedenen Brennweiten (Anordnung in festem Muster) genutzt. Damit ergeben sich, je nach Brennweite, verschiedene scharfe Bildebenen (ca. 100 Ebenen im Jahr 2015). So ist es auch nach der Bildaufnahme möglich, die Tiefe auszuwählen, in dem der Bildinhalt scharf dargestellt wird. Nutzt man zusätzlich das Prinzip der Bildfusion, so können selbst bei großen Abbildungsmaßstäben Bilder extremer Tiefenschärfe erzeugt werden, wie es selbst bei extremer Abblendung nicht möglich wäre. Allerdings müssen dabei die Rohbilddaten bei der Bildfusion aufwändig nachberechnet werden. Für das gesteigert tiefenscharfe Bild muss von Linse zu Linse eine Korrespondenzanalyse aus mehreren Bildern (wie beim fotometrischen Stereo) durchgeführt werden. Dabei wird der Nachteil möglicher Abschattungen (z.B. steile Kanten), wie bei Stereo-Berechnungen mit zwei Kameras, überwunden. Auf diese Weise ist es möglich, neben der 2D-Darstellung auch Tiefendaten aus den Lichtfelddaten zu gewinnen. Dabei ist die Tiefenauflösung (zusätzlich zu den bei fotometrischem Stereo auftretenden Faktoren) abhängig von der Anzahl der Mikrolinsen, sowie der Anzahl der verschiedenen Mikrolinsen-Brennweiten. Ebenso verschlechtert die Perspektive der eingesetzten entozentrischen Objektive die Tiefenauflösung. Durch Berechnung der Rohbilddaten ist es auch möglich, nachträglich den Betrachtungsstandort zu verändern, da das Licht, das von einem Objektpunkt ausgeht, unter verschiedenen Betrachtungswinkeln gesehen wird. Das Prinzip der Lichtfeldkameras kommt bei Zeilen- und Matrixbildsensoren zum Einsatz.

 

Anzeige

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Event-based vision is poised to take over from the frame-based approach used by traditional film, digital and mobile phone cameras in many machine-vision applications.‣ weiterlesen

www.prophesee.ai

Anzeige

Schnellere 3D-Smart-Sensoren verbessern die Reaktionszeit beim Edge Computing und reduzieren die Latenzzeit auf Millisekunden, bei gleichzeitiger Optimierung der Netzwerkbandbreite.‣ weiterlesen

www.lmi3d.com

Anzeige

The OpenVino (Visual Inference & Neural Network Optimization) toolkit accelerates deep learning and transforms vision data into business insights.

www.intel.de

Anzeige

Die erweiterbaren LXE300-Balkenbeleuchtungen gibt es jetzt auch für den SWIR-Bereich. Sie verfügen über Multi-Drive-Technologie.

www.stemmer-imaging.de

Anzeige

Ein neuer Algorithmus kombiniert Photometric Stereo Imaging mit der Analyse entstehender Reflektionen. Dazu werden unterschiedliche Beleuchtungswinkel realisiert und die Reflexionseigenschaften jedes einzelnen Objektpunktes analysiert.

www.opto.de

Der LED-Controller NT-I bietet nun die prozentgenaue, stufenlose Einstellung der Helligkeit über eine Digitalanzeige. Damit lässt sich die Helligkeit exakt und reproduzierbar regeln.

www.optometron.de

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige