Anzeige
Anzeige
Anzeige

Neuromorpher SoC

Neue Art von Beschleunigungs-SoCs für neuronale Netze

Der neuromorphe System-on-Chip-Baustein (NSoC) Akida ermöglicht erstmals eine gepulste neuronale Netzwerk-Architektur (SNN: Spiking Neural Network) in Serie.

Jeder Akida NSoC weist 1,2Mio. Neuronen und 10Mrd. Synapsen auf, was eine 100-mal bessere Effizienz mit sich bringt, als bei neuromorphen Testchips von Intel und IBM. Der NSoC wurde für den Einsatz als eigenständiger Embedded-Beschleuniger oder Co-Prozessor entwickelt. (Bild: BrainChip Holdings Ltd.)

Jeder Akida NSoC weist 1,2Mio. Neuronen und 10Mrd. Synapsen auf, was eine 100-mal bessere Effizienz mit sich bringt, als bei neuromorphen Testchips von Intel und IBM. Der NSoC wurde für den Einsatz als eigenständiger Embedded-Beschleuniger oder Co-Prozessor entwickelt. (Bild: BrainChip Holdings Ltd.)

Laut Daten des Marktforschungsunternehmens Tractica wird der Markt für KI-Beschleuniger-ICs bis zum Jahr 2025 die 60Mrd. US-$ überschreiten, Neuromorphe Computer versprechen dabei eine schnellere KI, insbesondere bei stromsparenden Anwendungen. Akida, griechisch für ´Puls bzw. Spitze‘, ist der erste Baustein einer neuen Generation von KI-Hardwarelösungen. Der NSoC ist klein, kostengünstig, stromsparend und eignet sich für Edge-Anwendungen wie Fahrerassistenzsysteme (ADAS), autonome Fahrzeuge, Drohnen, bildgesteuerte Robotik, Überwachungs- und Bildverarbeitungssysteme. Da er skalierbar ist, lassen sich zudem mehrere NSoCs miteinander verknüpfen.

Der Akida NSoC

Der Akida NSoC basiert auf einem reinen CMOS-Logikprozess. Gepulste neuronale Netze (SNNs) sind von Natur aus weniger leistungsfähig als herkömmliche faltungsneuronale Netze (CNN), da sie die rechenintensiven Faltungen und Fehlerfortpflanzungs-Trainingsmethoden durch biologisch inspirierte Neuronenfunktionen und Feed-Forward-Trainingsmethoden ersetzen. Brain-Chips Forschung hat das optimale Neuronenmodell und die besten Trainingsmethoden ermittelt. Jeder Akida NSoC weist effektiv 1,2Mio. Neuronen und 10Mrd. Synapsen auf, was eine 100-mal bessere Effizienz mit sich bringt, als bei neuromorphen Testchips von Intel und IBM. Vergleiche mit führenden CNN-Beschleunigern zeigen Leistungszuwächse um mehr als eine Größenordnung bei Bild-/Sekunden-/Watt-Benchmarks wie CIFAR-10 mit vergleichbarer Genauigkeit. „SNNs gelten als die dritte Generation neuronaler Netze“, so Peter van der Made, Gründer und CTO von BrainChip. „Der Akida NSoC ist das Ergebnis jahrzehntelanger Forschung, um das optimale Neuronenmodell und innovative Trainingsmethoden zu ermitteln.“ Der Akida NSoC wurde für den Einsatz als eigenständiger Embedded-Beschleuniger oder Co-Prozessor entwickelt. Er enthält Sensorschnittstellen für die pixelbasierte Bildgebung, dynamische Bildsensoren (DVS), Lidar, Audio und Analogsignale. Es verfügt zudem über Hochgeschwindigkeits-Datenschnittstellen wie PCI-Express, USB und Ethernet. Im NSoC finden sich Daten-zu-Puls-Wandler, die gängige Datenformate optimal in Pulse/Spikes umwandeln, um von der Akida-Neuronen-Fabric trainiert und verarbeitet zu werden.

Anzeige

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Moonvision automatisiert dank AI die Oberflächenerkennung unterschiedlichster Materialien. Was bislang über 50 Bilder erfordert hat, gelingt dem Wiener Startup mit nur elf Bildern. ‣ weiterlesen

www.moonvision.io

Anzeige

The Omnitek DPU (Deep Learning Processing Unit) is a configurable IP core built from a suite of FPGA IP comprising the key components needed to construct inference engines suitable for running DNNs used for a wide range of Machine Learning applications, plus an SDK supporting the development of applications which integrate the DPU functionality.‣ weiterlesen

www.omnitek.tv

Anzeige

Preiswerte Einplatinencomputer haben ihr Bastler-Image längst abgelegt und werden bereits zur Maschinensteuerung eingesetzt. Im Rahmen einer Masterarbeit an der TH Deggendorf wurde nun ein kostengünstiges Smart-Kamera-System auf Basis eines Einplatinencomputers (Raspberry PI 3) als Labormuster entwickelt.‣ weiterlesen

www.th-deg.de

Anzeige

Embedded Deep Learning soll künstliche Intelligenz von der Cloud in das Gerät oder die Maschine bringen. Der erste Schritt zur Verkleinerung einer Serverfarm besteht laut Imago darin, ein leistungsstarkes GPU-Board in einer kompakten VisionBox einzusetzen.‣ weiterlesen

www.imago-technologies.com

Anzeige

Die VisionCam ist eine frei unter Linux programmierbare, intelligente Kamera. Die hohen Datenraten werden durch den mit 1,5GHz getakteten Dual-ARM Cortex-A15-Prozessor verarbeitet.‣ weiterlesen

www.imago-technologies.com

Anzeige

Audi wird zukünftig Deep Learning in der Serienproduktion einsetzen. Die selbst entwickelte Software erkennt und markiert im Presswerk automatisch feinste Risse in Blechteilen in Sekunden.‣ weiterlesen

www.audi.de

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige