Anzeige
Anzeige
Anzeige

Echtzeitlernende Objekterkennung

Lernende KI zur automatischen Objektinspektion

Heutige Inspektionsssteme sind auf wenige, sehr akkurat justierte Objekttypen herstellerseitig justiert. Kommen neue Produkttypen hinzu, müssen die Systeme zeitaufwendig neu justiert werden. Die KI-Inspektionsplatform von Gestalt Robotics beseitigt diese Hürden.

Echtzeitlernende Objekterkennung: ein unbekanntes Objekt liegt vor (l.), der Nutzer macht drei bis fünf Fotos vom neuen Objekt mit einem Tablet oder Smartphone (m.) und wenige Sekunden später ist das System in der Lage das neue Objekt zu erkennen. (Bild: Gestalt Robotics GmbH)

Echtzeitlernende Objekterkennung: ein unbekanntes Objekt liegt vor (l.), der Nutzer macht drei bis fünf Fotos vom neuen Objekt mit einem Tablet oder Smartphone (m.) und wenige Sekunden später ist das System in der Lage das neue Objekt zu erkennen. (Bild: Gestalt Robotics GmbH)

Auf Basis eines neuronalen Netzes werden hochflexible Systeme zur Wareneingangsprüfung und Qualitätssicherung im laufenden Betrieb aufgebaut. Dadurch werden metrische Messungen mit einfachsten Kameras ermöglicht und jeder Benutzer kann über eine App neue Produkte in wenigen Sekunden anlernen. Durch die Kombination der Künstlichen Intelligenz (KI) und Maschineller Wahrnehmung kann flexibel eine breite Masse an Objekten inspiziert und vermessen werden. Das Gedächtnis der KI kann auf neue Produkttypen mit nur wenigen Fotos von jedem Mitarbeiter erweitert werden. So kann eine schier unbegrenzte Anzahl von Objektklassen erkannt und verwaltet werden. Das Verfahren basiert auf aktuellen Forschungsergebnissen zur Gesichtserkennung, wo Millionen verschiedene Gesichter gelernt und wiedererkannt werden müssen. Hat das KI-System ein Objekt erfolgreich im Bild detektiert, kann das Objekt metrisch vermessen werden. Dank dieser Besonderheit des neuen Ansatzes von Gestalt Robotics ist keine kostspielige 3D-Kamera erforderlich. Informationen über die Umgebung der Aufnahme und die KI-Analyse sind für eine präzise Vermessung eines Objektes ausreichend. Die KI-Inspekt-Plattform ist in der Lage, in unterschiedlichen Architekturen zu operieren, beispielsweise auf den neuen Embedded-Kamerasystemen von Adlink (Neon) und Flir (Firefly) sowie Server-Client-Architekturen, die sogar in Echtzeit über LTE/4G betrieben werden können. Die Wartung kann dank der Web-App-Oberfläche mit Laptops, Desktop-Rechnern oder Mobiltelefonen erfolgen. Jeder beliebiger Bildsensor ist nutzbar. Als Bildgeber können alle Quellen von RGB-Kameras bis X-Ray-Sensoren genutzt werden.

Erkennung von gekauften Produkten in der individuellen Gastronomie (Bild: Gestalt Robotics GmbH)

Einsatzgebiete

Wareneingangsprüfung: Üblicherweise wird die eingehende Ware manuell anhand der Rechnungsbeschreibungen und Artikelnummern in den Bestand aufgenommen. Diese Art der Prüfung ist zeitaufwendig und ermüdend. KI-Inspekt identifiziert das Objekt anhand des Fotos und ermöglicht so eine automatisierte Wareneingangskontrolle. Die Erkennung eingehender Objekte erlaubt es bei automatisierten Hochregalen, Waren und Bauteile voll automatisch einzusortieren und mithilfe von Fotos (´Finde mir dieses Objekt´) zu suchen.

Qualitätsprüfung: Die Vermessung der Objekte mit nur einer Kamera erlaubt es Objekte nicht nur auf optische Stimmigkeit zu prüfen, sondern auch auf geometrische Abweichungen vom Sollwert. Als modulares System ist es KI-Inspekt möglich die Kamerahardware an die Präzisionsanforderungen anzupassen, sowie weitere Informationsquellen, wie Gewicht und Text-Scan (OCR) zu integrieren.

Automatisierter Check-Out: Anstatt auf Barcodes angewiesen zu sein, können Produkte in jeder Lage z.B. auf einem Förderband erkannt werden und ermöglichen auch das Bepreisen von selbstzusammengestellten Menus in Kantinen.

Anzeige

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

The Omnitek DPU (Deep Learning Processing Unit) is a configurable IP core built from a suite of FPGA IP comprising the key components needed to construct inference engines suitable for running DNNs used for a wide range of Machine Learning applications, plus an SDK supporting the development of applications which integrate the DPU functionality.‣ weiterlesen

www.omnitek.tv

Anzeige

Moonvision automatisiert dank AI die Oberflächenerkennung unterschiedlichster Materialien. Was bislang über 50 Bilder erfordert hat, gelingt dem Wiener Startup mit nur elf Bildern. ‣ weiterlesen

www.moonvision.io

Anzeige

Preiswerte Einplatinencomputer haben ihr Bastler-Image längst abgelegt und werden bereits zur Maschinensteuerung eingesetzt. Im Rahmen einer Masterarbeit an der TH Deggendorf wurde nun ein kostengünstiges Smart-Kamera-System auf Basis eines Einplatinencomputers (Raspberry PI 3) als Labormuster entwickelt.‣ weiterlesen

www.th-deg.de

Anzeige

Der neuromorphe System-on-Chip-Baustein (NSoC) Akida ermöglicht erstmals eine gepulste neuronale Netzwerk-Architektur (SNN: Spiking Neural Network) in Serie.‣ weiterlesen

www.brainchipinc.com

Embedded Deep Learning soll künstliche Intelligenz von der Cloud in das Gerät oder die Maschine bringen. Der erste Schritt zur Verkleinerung einer Serverfarm besteht laut Imago darin, ein leistungsstarkes GPU-Board in einer kompakten VisionBox einzusetzen.‣ weiterlesen

www.imago-technologies.com

Die VisionCam ist eine frei unter Linux programmierbare, intelligente Kamera. Die hohen Datenraten werden durch den mit 1,5GHz getakteten Dual-ARM Cortex-A15-Prozessor verarbeitet.‣ weiterlesen

www.imago-technologies.com

Anzeige
Anzeige
Anzeige