Auf zu neuen Welten

Industrielles Mikro-Inspektionssystem mit DIC-Modul

Bildgestützte Mikroinspektionssysteme benötigen zur Defekterkennung oder Vermessung von Oberflächen-Mikrostrukturen immer höher auflösende Kameras und Optiken in Kombination mit objektanpassbaren Bildgebungsmethoden. Das Hochleistungs-Inspektionssystem mag.x system 125 ermöglicht als digitales Großfeldmikroskop die Verwendung von Mikroskoptechnologien für die Inline-Qualitätssicherung. Das System ist nun mit einem integrierten DIC-Modul verfügbar und ermöglicht auch die Inspektion transparenter Objekte.
Die Welt der industriellen Bildverarbeitung wird vor immer neue Herausforderungen gestellt, insbesondere in industriellen Produktionsumgebungen. Hier sind Mikrostrukturen oder Mikrobearbeitungsfehler auf zum Teil großflächigen Bauteilen zu erfassen, oft sogar inline im Produktionstakt, d.h. an bewegten Komponenten. Um extrem kleine Strukturen im Bereich weniger Mikrometer abbilden oder kleinste Partikel unter 1µm detektieren zu können, werden hochauflösende Objektive benötigt, die in der Lage sind, diese kleinen Strukturen auf einen Sensor abzubilden. Das mag.x system 125 schließt mit seinem Aufbau und Eigenschaften die Lücke zwischen Mikroskopen und Inspektionsobjektiven. So erreicht es mit einer Objekt-Auflösung von unter 1µm-Regionen, die bislang klassischen Mikroskopen vorbehalten waren. Zudem können erstmals (Zeilen- und Flächen-) Sensoren mit einer Diagonale von bis zu 57mm genutzt werden, die in der industriellen Bildverarbeitung aufgrund ihrer Vorteile bei Geschwindigkeit, Signal-Rausch-Verhältnis, Pixelanzahl und Auflösung für große Messfelder bereits weit verbreitet sind. Gleichzeitig wurde das optische Konzept der Mikroskope übernommen und in eine industrietaugliche Mechanik verpackt. Bild 2 zeigt eine mögliche Beispielkonfiguration des Systems mit modularem Mikroskopaufbau mit Objektiv (das nach Unendlich abbildet), Tubuslinse (die das Bild auf den Sensor fokussiert) und koaxialer Auflichtbeleuchtung (die im unendlichen Strahlengang eingespiegelt wird). Der modulare Aufbau ermöglicht eine einfache Erweiterung zum DIC-Mikroskop (differential interference contrast) in Auflichtanordnung. Die Inspektion von transparenten Objekten, von Objekten mit sehr schwer bis gar nicht sichtbaren Strukturen oder von äußerst kleinen Strukturen ist jetzt realisierbar. Diese Anforderungen sind mit herkömmlichen Techniken wie Auflicht- oder Dunkelfeldbeleuchtung kaum zu erfüllen.

Interferenzmikroskopische DIC-Techniken

Für traditionelle Mikroskope sind interferenzmikroskopische DIC-Techniken, die auf polarisationsoptischer Shearing-Interferometrie basieren, seit vielen Jahren verfügbar. Dort ist der sogenannte differentielle Interferenzkontrast nach Nomarski ein weit verbreitetes Bilderzeugungsverfahren zur kontrastreichen Abbildung von Phasenobjekten. Im Unterschied zu üblichen Amplitudenobjekten wird hier nicht die Amplitude sondern die Phase des verwendeten Lichtes im Mikroskop beeinflusst und sichtbar gemacht. Der Beleuchtungsstrahl wird durch ein DIC-Prisma in zwei Teilstrahlen zerlegt, die sehr eng benachbarte Objektpunkte treffen, bei einer Auflichtanordnung zum DIC-Prisma zurück reflektiert und vereinigt, dort interferiert und der gewünschte Bildkontrast erzeugt. Damit wird die Phasendifferenz beider Teilstrahlen von benachbarten Strukturen sichtbar, je nach Objekt unterschiedlich hervorgerufen durch das Material selbst (z.B. Brechzahlinhomogenitäten) oder die Oberflächenstruktur (geringste Höhenunterschiede). Derartige DIC-Standardverfahren sind jedoch bislang in der Welt der Inspektionsobjektive kaum bekannt bzw. werden kaum angewendet. Das mag.x system 125 ermöglicht erstmals die Verwendung dieser Mikroskopietechnik in der industriellen Inspektion. Für das System wurde eine spezielle DIC-Einheit mit verschieb- und austauschbarem DIC-Prisma passend zu den Objektiven entwickelt. Die Objektive sind deutlich größer als herkömmliche Mikroskopobjektive, bei bis zu dreifach größerem Objektfeld mit einer höheren Auflösung und einem höheren Kontrast. Die DIC-Einheit ist zwischen Objektiv und Tubuslinse bzw. Basiseinheit montiert. Qioptiq hat zudem die Basiseinheiten weiterentwickelt und mit zwei drehbaren Polarisationsfiltern ausgestattet. Anwender können nun durch die leichte Handhabung der speziell gestalteten DIC-Komponenten (DIC-Prisma, Polfilter) Phasenstrukturen im Auflicht hoch aufgelöst und kontrastreich darstellen. Es entsteht der für das DIC-Verfahren charakteristische reliefartige Pseudo-3D Bildeindruck (Bild 1). Damit lassen sich z.B. Lufteinschlüsse in Kunststoffen und Glas, Beschädigungen bzw. die Sauberkeit optischer Oberflächen oder äußerst kleine Mikrostrukturen bzw. -defekte unter 1µm in der Höhe (auch auf mechanischen Oberflächen) detektieren. Weitere Objekte, bei denen mit großen Sensoren und Objektfeldern bis 12,5mm Strukturen sichtbar gemacht und geprüft werden, sind in Bild 3 dargestellt. Selbst mit Zeilensensoren bis zu 57mm Länge können Strukturen im sub-µm-Bereich mit hohem Durchsatz detektiert werden. Je nach Anwendung, Prüfobjekt und Informationsgehalt sind sowohl Farb- als auch s/w-Kameras zu verwenden. Zahlreiche Bauteile des mag.x system 125 sind kompatibel zu den neuen DIC-Komponenten und erlauben den Aufbau eines modularen Inspektionsmikroskops, das optimal auf die jeweilige Anwendung abgestimmt ist. Eine Kombination mit der Autofokus-Einheit ist ebenso möglich. Die eigentliche Abbildungsleistung des Systems (MTF, Telezentrie, Verzeichnung, chromatische Korrektion usw.) bleibt dabei selbstverständlich erhalten.

Das könnte Sie auch interessieren

Umfirmierung der MWF Roland Friedrich GmbH

Bereits 2015 wurde die MWF Roland Friedrich GmbH, Hersteller von kundenspezifischen Mess- und Prüflösungen aus Großostheim, von der Mahr Gruppe übernommen. Nun folgte auch die Umfirmierung der Tochtergesellschaft des Fertigungsmesstechnik-Herstellers in Mahr MWF GmbH. Ziel dabei sei, das Unternehmen noch sichtbarer in die Qualitätsmarke Mahr einzufügen und dadurch noch internationaler zu vermarkten.

www.mahr.com

Partnerschaft Matrix Vision und Metrilus

Matrix Vision ist eine Partnerschaft mit dem Unternehmen Metrilus GmbH aus Erlangen eingegangen. Metrilus ist eines der ersten Unternehmen weltweit, das sich auf Komplettlösungen für Echtzeit-3D-Bildverarbeitungsanwendungen spezialisiert hat. In Verbindung mit der 6D-Perception Camera mbBlueSirius von Matrix Vision bietet Metrilus zukünftig Beratung, Entwicklung von Prototypen und Software-Lösungen an.

www.matrix-vision.com

Vervierfachtes geometrisches Auflösungsvermögen

MicroScan ermöglicht das Bildformat einer radiometrische Thermografiekamera mit gekühltem FPAPhotonen-Detektor zu vervierfachen. Für Modelle der High-End-Kameraserie ImageIR bedeutet dies, dass sich Aufnahmen mit bis zu 2.560×2.048 IR-Pixeln erstellen lassen. Hinter der Funktion verbirgt sich ein schnell rotierendes MicroScan-Rad, das in der Kamera integriert ist. Es sorgt dafür, dass pro Radumdrehung vier verschiedene Einzelaufnahmen entstehen, die zueinander jeweils um ein halbes Pixel lateral versetzt sind. Die Einzelaufnahmen werden in Echtzeit zu einem Thermogramm mit vierfachem Bildformat zusammengeführt.

www.InfraTec.de

Wellenfrontsensor für die Optikprüfung

Der Wellenfrontsensor SHSLab dient zur die Prüfung von Optiken, optischen Systemen und Lasersystemen. Das Messprinzip ermöglicht die Erfassung von Wellenfronten durch eine einzelne Messung, so dass er schnell und unempfindlich gegenüber externen Einflüssen ist. Ein Mikrolinsen-Array transformiert die lokalen Propagationsrichtungen der Lichtstrahlen in ein Feld von Fokuspunkten auf einer Kamera. Die Abweichung der Fokuspunkte von ihren Referenzpositionen wird berechnet und schließlich die Wellenfront durch numerische Integration.

www.optocraft.com

Anzeige
Kamera-Kompositgehäuse für Roboteranwendungen

Der Kamerakopf des Bildverarbeitungssystem Robot Inspector for Integrity Analysis (RIITTA) ist eine kompakte Einheit, die alle Einzelkomponenten wie Kamera, Objektiv, blitzbare LED-Beleuchtung und Ansteuerelektronik in einem Spezialgehäude vereint. Das leichte Kompositgehäuse ist IP65-geschützt und bietet Schutz vor Staub und Spritzwasser. Die Eigenschaften der verwendeten Materialien in Verbindung mit dem Design des Gehäuses vermeiden Trägheitsmomente, die vor allem bei Roboteranwendungen eine entscheidende Rolle spielen.

www.asentics.de

Anzeige
Neuer Geschäftsführer bei Omron Electronics

 

Zuvor war Kluger als Managing Director Europe und Vice President Business Development für Adept Technology, später für Omron Adept Technologies tätig. Außerdem ist er als ehrenamtliches Vorstandsmitglied im Fachverband Robotik des VDMA aktiv.

www.industrial.omron.eu

Anzeige