Intuition in a box?

Jeff Bier’s Embedded Vision Column

Since reading Malcolm Gladwell’s ‚Blink‘ a decade ago, I’ve been intrigued by how the mind works – particularly how judgements and decisions are made. I’ve been inspired to take an armchair tour of research on this topic, and have encountered fascinating insights from the likes of David Eagleman and Daniel Kahneman.
Reading the work of these talented researchers and writers has led me to the inescapable conclusion that most of our judgements and decision-making take place in our subconscious minds. I consider myself a hyper-rational engineering type, so the idea that my subconscious is calling the shots – based not on deliberation and calculation but rather on intuition – was initially uncomfortable. Lately, though, I’ve come to appreciate the value of intuition – the way it can alert me to a dangerous situation before I comprehend the nature of the danger, for example, or warn me that someone’s being untruthful before I’m able to identify the actual lie. And that has started me wondering: What if our devices, systems and applications could gain this type of intuitive insight? For example, what if a device could warn you that there’s been a change in your elderly parent’s posture or gait that might indicate an increased risk of falls? Or that your teenager’s distracted driving indicates a higher risk of an accident? Because our subconscious processes are by definition hidden from us, it might seem futile to try to create programs to emulate them. But I think that deep neural networks (the kind that have recently been beating humans at image classification tasks) offer an elegant solution. Creating a deep neural network to distinguish between classes of objects or events (for example, a genuine smile vs. a faked one) does not require devising an algorithm to mechanically emulate the mechanisms that enable humans to distinguish between these cases. Instead, the neural network acts as a generalized learning machine, and the developer trains it to recognize meaningful differences via large numbers of examples. One factor that’s held back the use of deep neural networks is processing power. It takes a humungous amount of processing power to train deep neural networks, and quite a lot to run them once trained. Only very recently has this type of processing power become available at practical prices – including in embedded processors suitable for high-volume, cost-sensitive products. Because deep neural networks are massively parallel structures, they are very suitable for acceleration using massively parallel architectures. And because they have simple, highly repetitive structures, they’re also amenable to acceleration via specialized architectures. As result, I think we can expect rapid improvements in cost-performance and energy-efficiency of processors for neural network applications – far outstripping the modest gains enabled by advances in chip manufacturing. This means that, very soon, developers of many types of systems, applications and devices will have the possibility of incorporating new types of intelligence into their products. But to do so, they’ll need to understand how deep neural networks work, how to design them, and how to train them. I believe that the combination of deep learning and computer vision will create world-changing products and bring vast opportunities, and I’m eager to harness it. If you’re interested in learning about deep neural networks and other computer vision topics, I invite you to join me at the Embedded Vision Summit on May 2-4 in Santa Clara, California. This event, an educational forum for product creators interested in incorporating visual intelligence into electronic systems and software, is organized by the Embedded Vision Alliance. For details about this unique conference, and to register, please visit our website.

Anzeige

Das könnte Sie auch interessieren

Wie können komplette 3D-Daten erfasst, interne Defekte in Gussteilen erkannt und sogar deren 3D-Koordinaten bestimmt werden? Das Unternehmen Carl Zeiss Industrielle Messtechnik GmbH hat ein informatives Video veröffentlicht, in dem die Inline-Prozessinspektion mit dem Zeiss VoluMax in der Leichtmetallgießerei am BMW-Produktionsstandort Landshut veranschaulicht wird.

Anzeige

Klassische Wärmebildkameras benötigen einen mechanischen Shutter, mithilfe dessen ca. alle 2 bis 3 Minuten Referenzdaten zur Kalibrierung der Wärmebilddarstellung und der Temperaturmessung aufgenommen werden. Jedoch erzeugt das Schließen des Shutters ein Geräusch und die Videoaufzeichnung ist während dieser Zeit unterbrochen. Daher hat Tamron nun ein Shutter-loses Wärmebildkameramodul auf Basis eines amorphen Silikonwärmebildsensors entwickelt. Dieser Sensor verfügt über eine exzellente Temperaturwiedergabe selbst wenn sich seine eigene Temperatur verändert.

www.tamron.eu

Der Industriescanner VTCIS ist in der Lage, im Druckbild fehlende Nozzles bei einer Auflösung von 1.200dpi automatisch zu detektieren. Da der CIS (Compact Image Sensor) nicht das komplette Bild einzieht, sondern nur bestimmte Bereiche scannt, wird die Datenverarbeitung vereinfacht und die Datenmenge deutlich reduziert. Außerdem garantiert die integrierte Flüssigkeitskühlung Farbstabilität über den gesamten Druckprozess hinweg und schließt Farbabweichungen aus. Dank einer Zeilenrate von bis zu 250kHz und einer Abtastgeschwindigkeit von bis zu 20m/s ist der Scanner für sehr schnell laufende Druckprozesse bestens geeignet.

www.tichawa.de

Die neuesten Versionen der 3D-Kameras für Lasertriangulation erreicht Triangulationsraten von bis zu 68kHz. Die Kamera basiert dabei auf einem 2/3″ Hochgeschwindigkeitssensor von Cmosis, der auch bei schwachen Lichtverhältnissen eine hervorragende Leistung erbringt. Als Schnittstelle verwendet die 3D05 das standardisierte GigEVision-Interface. Für eine einfache Integration und Synchronisierung besitzt die Kamera eine komplette, in die Kamera integrierte Drehgeberschnittstelle (RS422 und HTL). Das HTL-Interface ermöglicht dabei auch einen stabilen und effizienten Einsatz in der Schwerindustrie oder Bereichen mit starken elektrischen Störquellen.

www.photonfocus.com

Sensoren bis zu 1/1.2 und 1″ wurde die HF-XA-5M Objektivserie von Fujinon entwickelt. Die Objektive erreichen eine konstant hohe Auflösung von 5MP über das gesamte Bildfeld – bei einem Pixelabstand von 3,45µm. Dies gilt bei offener Blende ebenso wie bei verschiedenen Arbeitsabständen. Mit 29,5mm Außendurchmesser eignen sich die Objektive für platzkritische Anwendungen.

www.polytec.de

Die Messsoftware Wave ist für den hochpräzisen Wegmesssensor IDS3010. Damit können Messdaten in Echtzeit analysiert, verarbeitet und ausgewertet werden. Die Software verfügt über verschiedene Funktionen zur Visualisierung und Analyse von Daten, beispielsweise können die angezeigten Messdaten vergrößert/verkleinert werden oder die Datenvisualisierung kann gestoppt werden, um bestimmte Zeitbereiche zu analysieren. Außerdem ist eine Live Fast-Fourier-Transformation von Messwerten implementiert.

www.attocube.com

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige