Anzeige
Anzeige
Anzeige

KI in der Tiefe

Höhere Erkennungsraten mit Multi-ToF-Plattform und Deep Learning

Mit einer Multi-ToF-Plattform, bei der verschiedene bildgebende Sensoren an einen Nvidia CPU+GPU basierten Hub angebunden sind, lassen sich mit Deep Learning, im Vergleich zu reinen RGB-Bildern, höhere Erkennungsleistungen erzielen.

Bild 1 | Auf der Multi-ToF-Plattform von Becom können auch leistungsfähige Deep-Learning-Anwendungen realisiert werden. (Bild: Becom Systems GmbH)

Bild 1 | Auf der Multi-ToF-Plattform von Becom können auch leistungsfähige Deep-Learning-Anwendungen realisiert werden. (Bild: Becom Systems GmbH)

Die Evotegra GmbH begleitet Deep Learning Projekte von der Definition der Datenstrategie bis zur tiefen Systemintegration auf der jeweiligen Zielhardware. Ein sehr gutes Beispiel hierfür ist die Multi-ToF-Plattform von Becom, bei der verschiedene Sensoren an einen Nvidia CPU+GPU basierten Hub angebunden werden können. Neben Time-of-Flight (ToF) Daten, lassen sich auch Farbsensoren oder Sensoren anderer Wellenlängen (IR, Hyperspectral Imaging) anbinden und liefern zusätzliche Kanäle für erweiterte Anwendungen oder die Erhöhung der Qualität. Eine Anwendung ist die Leergutkontrolle in der Getränkeindustrie. Obwohl eine auf den ersten Blick relativ kontrollierte Umgebung, ergeben sich durch verschiedene Farben, Formen, Materialien, Verschlüsse oder Fremdkörper eine große Varianz an Szenarien im Feld. Die verwendeten ToF-Sensoren liefern neben den Tiefendaten auch ein IR-Graustufenbild. Dieses ist gut nutzbar, um das Netzwerk zu trainieren und bei schwierigen Situationen, wie Glas oder stark reflektierender Verschlüsse, robustere Ergebnisse zu liefern. Durch die aktive Beleuchtung sind die Daten zudem weitgehend unabhängig von den Umgebungsbedingungen.

Datenanalyse per KI

Wie bei jedem Projekt beginnt man mit der Definition der initialen Klassen und einer ersten Datenanalyse. Danach definiert man die Datenerfassungs-Strategie. Auch für die künstliche Intelligenz (KI) gilt das GIGO Prinzip (Garbage In, Garbage Out). Dauer und Kosten eines Projekts werden maßgeblich von der Zeit bestimmt, die man benötigt, um die Daten in der notwendigen Qualität und Quantität zu beschaffen. Eine große Menge an schlechten Daten ist ebenso problematisch wie zu wenig Daten. Ein Datensatz zum Training eines neuronalen Netzwerkes umfasst typischerweise eine bis vier Millionen Datenpunkte. Da gerade am Anfang eines Projektes in der Regel nicht so viele Daten zur Verfügung stehen, werden die Daten augmentiert, d.h. auf Basis der vorhandenen Daten werden künstliche Variationen erzeugt. Ziel im Laufe eines Projekts ist es jedoch, die künstlichen Daten durch echte Daten zu ersetzen. Ein Einsatz von Hilfskräften oder speziellen Dienstleistern zur Datenerhebung erfordert entweder hohen Nachbearbeitungsaufwand oder ist aufwendig und teuer. Stattdessen können neuronale Netzwerke bereits frühzeitig die Datenaggregation unterstützen. In zyklischen Abständen werden mit Hilfe der neu gewonnen Daten verbesserte Netzwerke trainiert. Der Aufwand für die Extraktion der Daten sinkt im Laufe eines Projektes stetig. Währenddessen kann bereits die Prozessintegration erfolgen.

Anzeige

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Die Sensoren Viro WSI wurden für MIG/MAG- und Lötnähte sowie für Lasernähte optimiert. Damit ist das Prüfsystem ideal für anspruchsvollen Prüfaufgaben z.B. an Karosserien, Achsbauteilen und EV-Batterien.‣ weiterlesen

www.vitronic.com

Anzeige

The VP-101MX and 151MX cameras are equipped with the CoaXPress interface and based on the IMX461 and 411 CMOS. The MX-9 offers up to 8.7fps at 11,648x8,742 resolution. For even higher applications, the MX-6 offers up to 6.2fps at 14,192x10,640 Pixel.‣ weiterlesen

www.vieworks.com

Anzeige

Der LumiScanX basiert auf der Lichtfeld-Sensorik der LumiScan Technologie und dreizehn 1,2MP Kameras. Messabstände und -volumina können über weite Bereiche variiert werden.‣ weiterlesen

www.hdvisionsystems.com

Anzeige

Bei der Tracer SI-Plattform für die lasergeführte Montage und Kontrolle werden 3D-CAD-Daten verwendet, um 3D-Laserbilder auf physische Oberflächen zu projizieren. Bei der neuartigen Kamera erstrecken sich Projektion und hochauflösende Bildscan-Funktionen auf das gesamte Projektionsvolumen.‣ weiterlesen

www.faro.com

Anzeige

Das Positionierungssystem LightRunner verändert die automatisierte optische 3D-Messung. Ein patentiertes Musterprojektionsverfahren und Software-Algorithmen ermöglichen es Zykluszeit zu verkürzen und die Produktivität erhöhen, da die Zeit für Mapping und Roboterstabilisierung entfällt.‣ weiterlesen

www.hexagonmetrology.de

Das High-Speed-Mikroskop des Fraunhofer IPT digitalisiert Proben mit bis zu 500fps und lässt sich anhand von Smart Glasses mit einer Gestensteuerung kombinieren. Der Mikroskoptisch bewegt das Objekt kontinuierlich während der gesamten Aufnahme, um die Probe mit sehr hohen Bildraten zu digitalisieren.‣ weiterlesen

www.iof.fraunhofer.de

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige