Anzeige

3D-Lasertriangulation für Tastatur und Touchpad

Perfekter Sitz fürs Touchpad

Beim Einbau von Tastatur und Touchpad in ein Notebookgehäuse ist höchste Präzision gefragt. Die exakte Ausrichtung und Höhe der Tasten, sowie der nahtlose Anschluss des Touchpads, sind wichtige Kriterien für das Qualitätsempfinden und den Arbeitskomfort des Nutzers. Um diese Anforderungen zu erfüllen wurde eine modulare Messstation entwickelt, die mittels 3D-Lasertriangulation die genaue Lage der Tasten und die Tiefe der Touchpadtasche misst.
Wenige Mikrometer können darüber entscheiden, ob ein Notebook einen hochwertigen oder billigen Eindruck macht. Wenn Tasten exakt gleich hoch sind und die Spaltmaße zwischen Touchpad und Gehäuseaussparung unmerklich klein, sieht das Design wertiger aus. Premium-Hersteller legen deshalb großen Wert auf solche kosmetischen Details. Die bislang in vielen manuellen Arbeitsschritten vorgenommene Justage für einen perfekten Sitz von Tastatur und Touchpad kann künftig durch eine hochpräzise, automatisierte Produktionslösung ersetzt werden. Mittels Lasertriangulation misst die Messmaschine die Ausrichtung und Höhe jeder einzelnen Taste sowie die Höhe des Touchpads im Gehäuse.

Beispiel Touchpad

Bevor dieses in die Vertiefung des Gehäuses – die sogenannte Touchpadtasche – eingesetzt wird, misst ein Lasersensor die Tiefe der Tasche, sowie deren Topographie. Die Dicke und Topographie des Touchpads wird ebenfalls vor dem Einbau bestimmt. Beide Maße variieren aufgrund von Fertigungsschwankungen. Sind aber beide Maße schon vor dem Einbau bekannt, kann man aus diesen Werten den erforderlichen Höhenausgleich über ein 3D-Matching-Verfahren berechnen und automatisch die passenden Unterlegscheiben einsetzen – eine manuelle Nacharbeit entfällt. Dabei werden vier Unterlegscheiben genutzt, die unterschiedlich dick sein können. Das Touchpad wird so an jeder Seite auf die richtige Höhe gebracht. Die Unterlegscheiben variieren dabei von 25 bis 400µm in Schritten von je 25µm. Manz besitzt langjährige Erfahrung mit der 3D-Lasertriangulation und hat die Methode bereits früher genutzt, um z.B. die Ebenheit und Dicken von Solarzellen zu messen. In der neuen Messmaschine arbeitet ein Sensorkopf, dessen Laser eine feine Linie aus blauem Licht auf das Objekt wirft. Eine im Winkel angeordnete Kamera misst das reflektierte Licht. Über den bekannten Triangulationswinkel kann man dann eine Höhenlinie des Objektes bestimmen. Höhenunterschiede – etwa zwischen Touchpad und Gehäuse – erscheinen im Bild als Stufen in der Linie des reflektierten Lichts. Fährt man den Sensorkopf über das komplette Notebook-Gehäuse, erhält man aus den einzelnen Linienaufnahmen ein 3D-Höhenbild. Innerhalb dieses Bildes können die geforderten Messungen vollzogen werden. Die Messunsicherheit, korreliert gegen eine taktile Koordinaten-Messmaschine, betrug maximal 20µm. Dabei wurde noch nicht mal auf eine vergleichbare Temperatur geachtet, die bei der Messung von Aluminiumteilen einen nicht zu unterschätzenden Einfluss hat. Daher ist sogar noch Potential zur Verbesserung gegeben.

Herausforderung Messtempo

Um den Anforderungen des Marktes gerecht zu werden, mussten die Manz-Ingenieure Neuland betreten. Eine Herausforderung war das Messtempo: Die Montage der Notebooks erfolgt in einem so schnellen Takt, dass für die Messung nur elf Sekunden bleiben. Der Sensor fährt mit 400mm/s über das Gehäuse, was für fünf Überfahrten reicht. Die Frequenz des Sensors beträgt dabei bis zu 8kHz. Das ist schnell, aber für die komplette Fläche des Laptops nicht schnell genug. Daher musste ein zweiter Sensor genutzt werden. Er ist in einem Abstand montiert, der etwa der halben Gehäusebreite des Notebooks entspricht. Beide Sensoren teilen sich die Arbeit, indem sie jeweils die Hälfte des Gehäuses abdecken. In der Mitte überlappen sich die Bilder zum Teil, was eine präzise Kalibrierung erfordert. Andernfalls würden die Daten in der Überlappungszone widersprüchliche Ergebnisse liefern. Durch das hohe Messtempo der beiden Sensoren verdoppelt sich das Datenvolumen auf 200MB/Gehäuse. Diese Datenmenge muss nach der Messung innerhalb von fünf Sekunden verarbeitet werden, da dann schon das nächste Notebook in die Arbeitsstation fährt. Dazu dient ein Industrie-PC, auf dem eine Bildverarbeitungs-Software-Suite läuft, die bei Manz entwickelt wurde. Außerdem wurde ein Auswerte-Algorithmus entwickelt, der die Sensor-Spuren über neue Kalibrierverfahren in einem topografischen Bild zusammensetzt und darin die geforderte Messung vornimmt. Zusätzlich zur Kompensierung von Sensor-Ungenauigkeiten gleichen die Kalibrierverfahren jegliche Fehler der Achssysteme aus, wie Schrägstellungen oder Berge und Täler, die durch die Führungen auf ’natürliche‘ Weise vorhanden sind. Eine zweite Messmaschine, die mit einer 2D-Messung – allerdings mit höherer lateraler Auflösung – Spaltmaße im Notebookgehäuse bestimmt, kommt sogar auf ein Datenvolumen von 1GB. Die Messstation arbeitet mittlerweile seit März 2015 in der Serienproduktion bei vier Kunden. Aktuell entwickelt Manz eine neue Messmaschine mit einem Sensor mit verbesserter Optik und höherer Auflösung. Sie ist für eine noch präzisere Tiefenbestimmung der Touchpadtasche ausgelegt, wobei die Tastatur dabei nicht mehr mit vermessen wird.

Anzeige

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Die stationären Messsysteme Osiris Hot und Cold überwachen simultan Oberflächengüte und Maßhaltigkeit von Walzprofilen. Während Osiris Hot das Messverfahren im heißen Zustand durchführt, überprüft die Cold Variante bereits erkaltete Walzgüter auf Profilabweichungen und Oberflächendefekte.

www.nextsense-worldwide.com

Anzeige

Das Photobiologische-Sicherheits-Messsystem PSM System 200-800nm ist das erste mobile und vorkonfigurierte Messsystem für die Kontrolle und Beurteilung der Blaulichtgefährdung von Leuchtmitteln aller Art. Das System misst nach den Standards IEC (EN) 62471 und EN14255-1. Es besteht aus dem ab Werk kalibrierten hochauflösenden Spektrometer Spectis 5.0 Touch (UV-VIS) 200-800nm, einem speziellen Messkopf zur Erfassung der Bestrahlungsstärke sowie aus einem Messteleskop zur Strahldichtemessung, das den Beobachtungswinkel des menschlichen Auges simuliert. Daneben ist die Messsoftware Spectrosoft für umfangreiche Lichtanalysen und Auswertungen enthalten.

www.gloptic.com

Anzeige

Das Multisensorgerät MiScan Vision System kommt in den Versionen Apex und Hyper auf den Markt. Es kombiniert präzise non-taktile Messung bei hohem Messdurchsatz mit hochgenauem taktilen Messen.

www.mitutoyo.de

Anzeige

Die Inspektionssoftware Geomagic Control X ermöglicht die Messung und Validierung realer Objekte, sowie die Erstellung von Prüfberichten mithilfe von Software-Inspektionstools. Die Lösung zeichnet sich dadurch aus, dass sie sich für alle Bauteilgrößen eignet und dafür beliebige Scanner-Typen und -Technologien eingesetzt werden können.

www.3dsystems.com

Anzeige

Der VDMA-Expertenkreis Machine Learning des Fachverbands Software und Digitalisierung hat einen Quick Guide ´Machine Learning´ verfasst. Der Leitfaden richtet sich vor allem an das Management von Maschinebauunternehmen.

sud.vdma.org

Anzeige

TruTag Technologies hat mit HinaLea Imaging eine neue Business Unit für den Bereich Hyperspectral Imaging gegründet. Die neue Firma hat mit dem Modell 4100 bereits eine autonome High-Resolution Handheld Hyperspectral Kamera im Programm. Im Herbst soll bereits eine zweite Version erscheinen. Neu an Bord sind bereits Alexandre Fong (Director of Hyperspectral Imaging), Janette Wilson (US Sales Director) und Kevin Lynch (European Sales Director).

www.hinaleaimaging.com

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige