Aus allen Perspektiven

Rechenleistung mehrerer Smart-Kameras parallel nutzen

Das Bildverarbeitungssystem In-Sight VC200 behält unabhängig von der Anzahl der angeschlossenen Smart-Kameras seine Prüfgeschwindigkeit bei. Mehr noch: Es wird mit jeder neuen Kamera schneller. Unterstützt wird es von der In-Sight-Tools-Software, die das Einrichten von Multi-Kamera-Applikationen deutlich vereinfacht. Eine plattformunabhängige HMI-Technologie erlaubt zudem die Überwachung und Steuerung der Applikation mittels Web-Browser, ohne dass eine spezielle Hard- oder Software installiert werden muss.

 Der Controller In-Sight VC200 für Multi-Smart-Kamera-Systeme erlaubt den Anschluss von vier Smart-Kameras. (Bild: Cognex Germany Inc.)

Der Controller In-Sight VC200 für Multi-Smart-Kamera-Systeme erlaubt den Anschluss von vier Smart-Kameras. (Bild: Cognex Germany Inc.)

Die industrielle Praxis fordert Bildverarbeitungsanwendungen mit mehreren Kameras für sogenannte Multi-View-Inspektionen. Nur so können Objekte aus unterschiedlichen Richtungen nach einer bestimmten, vorher festgelegten Prozedur geprüft werden, d.h. die einzelnen Kameras sind in Abhängigkeit zueinander geschaltet. Nachdem beispielsweise Kamera eins ein Objekt erkannt und identifiziert hat (Flasche, Tube, Glas etc.), können die anderen Kameras des Multi-View-Systems bestimmte vorgegebene, neuralgische Merkmale gemäß der Systemkonfiguration untersuchen. Multi-View-Inspektionen kommen in vielen Branchen wie dem Lebensmittelsektor, Getränkeabfüllung, Automobilbereich oder im Maschinenbau immer häufiger zum Einsatz.

Hohe Anforderungen meistern

Bei solch komplexen Inspektionen gibt es Herausforderungen in zweierlei Hinsicht: Anwender müssen die Ergebnisse der einzelnen Kameras koordinieren und kombinieren können. Zudem bildet die Datenverarbeitung des Gesamtsystems den Flaschenhals für die erforderliche rasche Prüffolge. Denn traditionelle Multi-Kamerasysteme verwenden nur einfache´ Kameras, die mit einer Steuerung verbunden sind. Diese haben keine eigene Rechenleistung; deshalb teilen sie sich die Prozessorleistung der Steuerung. Wenn mehrere Kameras hinzugefügt werden, verringert sich die Leistung des Gesamtsystems und beschränkt Multi-Kamerasysteme auf einfache Applikationen, bei denen Bilder gleichzeitig aufgenommen werden. Zudem besteht die Forderung, dass komplexe Prüfsysteme einfach konfigurierbar und modifizierbar sein müssen. Dabei ist es wichtig festzulegen, welche Eingriffsmöglichkeiten bzw. Berechtigungen einzelne Mitarbeiter haben. Bisher war es oft schwierig, das Setup für Multi-View-Inspektionen neu aufzusetzen, Änderungen vorzunehmen oder das Gesamtsystem neu zu parametrieren. Außerdem bieten die Nutzerschnittstellen (HMI) derzeitiger Lösungen keine mobilen Eingriffsmöglichkeiten und sind, je nach Benutzerzugriff, bei der Darstellung verschiedener Anwenderansichten beschränkt.

Datenverarbeitung auf mehreren Kameras

Zur Durchführung von Multi-View-Inspektionen kann der Anwender über vier GigE-Ports bis zu vier In-Sight-Smart-Kameras an einen VC200-Vision-Controller anschließen. Dabei ist es zum ersten Mal möglich, die Rechenleistung mehrerer Smart-Kameras bei Hochleistungsanwendungen parallel zu nutzen. Das Multi-Smart-Kamera-System verteilt die Datenverarbeitung auf mehrere Kameras und erweitert somit die Bandbreite der möglichen Multi-Kamera-Prüfanwendungen. Da jede Smart-Kamera über einen eigenen Prozessor verfügt, erhöht sich mit jeder hinzugefügten Kamera die zur Verfügung stehende Gesamtrechenleistung. Das wiederum ermöglicht die Verwendung der Vision-Tools-Software auf jeder Kamera ohne negative Auswirkungen auf das Gesamtsystem, egal wie viele Kameras im System installiert sind.

Aus allen Perspektiven
Bild: Cognex Germany Inc.


Das könnte Sie auch interessieren

Kamera-Kompositgehäuse für Roboteranwendungen

Der Kamerakopf des Bildverarbeitungssystem Robot Inspector for Integrity Analysis (RIITTA) ist eine kompakte Einheit, die alle Einzelkomponenten wie Kamera, Objektiv, blitzbare LED-Beleuchtung und Ansteuerelektronik in einem Spezialgehäude vereint. Das leichte Kompositgehäuse ist IP65-geschützt und bietet Schutz vor Staub und Spritzwasser. Die Eigenschaften der verwendeten Materialien in Verbindung mit dem Design des Gehäuses vermeiden Trägheitsmomente, die vor allem bei Roboteranwendungen eine entscheidende Rolle spielen.

www.asentics.de

Neuer Geschäftsführer bei Omron Electronics

 

Zuvor war Kluger als Managing Director Europe und Vice President Business Development für Adept Technology, später für Omron Adept Technologies tätig. Außerdem ist er als ehrenamtliches Vorstandsmitglied im Fachverband Robotik des VDMA aktiv.

www.industrial.omron.eu

Jahresabschluss und Verä;nderungen bei Stemmer

Am 30. Juni hat der global tätige Bildverarbeiter Stemmer Imaging sein Geschäftsjahr 2016/2017 mit einem Umsatz von 88,7Mil.€ und einem währungsbereinigten Wachstum von 6% abgeschlossen. Der Abschluss stellt auch das Ende einer Ära dar.

www.stemmer-imaging.de

Zylinderkopf-Volumenprüfung

Der 3D Snapshot Sensor Gocator 3210 mit integrierter Zylinderkopf-Volumenprüfung wurde speziell für die Kammervolumeninspektion von Zylinderköpfen in kleinen bis mittelgroßen Verbrennungsmotoren entwickelt. Die Sensoren produzieren hochauflösende 3D-Scans und Messergebnisse mit einer Genauigkeit von +/-0,04cm3 in weniger als 5Sek., selbst bei Brennkammern und Kolben mit glänzenden Oberflächen. Eine 2MP Stero-Kamera minimiert Abschattungen.

www.lmi

Anzeige
Verbesserte Genauigkeiten für Messmaschinen

Für das hochgenaue Messen wurde die Auswerte-Elektronik Quadra-Chek 3000 entwickelt. Moderne Videowerkzeuge werten das Kamerabild von Mess- und Profilprojektoren, Messmikroskopen oder Videomessmaschinen aus. Die integrierte Fehlerkompensation verbessert die mechanische Genauigkeit der Messmaschine. Filterfunktionen verhindern, dass Verschmutzungen auf dem zu messenden Objekt oder auf der Optik der Messmaschine das Ergebnis verfälschen. Bei der Auswertung des Kamerabildes erkennt die Elektronik Kanten und legt darauf Messpunkte fest.

www.heidenhain.de

Anzeige
Sicherheit ab dem ersten Teil

Die Möglichkeit des korrelationsfreien Messens ermöglicht in der Produktionslinie bereits für das erste Bauteil die notwendige Sicherheit über die Maßhaltigkeit. Damit können Unternehmen darauf verzichten, in regelmäßigen Abständen ihre Karosserieteile auf einem Koordinatenmessgerät (KMG) nachzumessen und die erkannten Abweichungen zwischen Inline und KMG als Korrekturwerte auf die Inline-Messanlagen zu übertragen.

www.zeiss.de

Anzeige